Cinzia Montemurro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4190427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular diversity and ecogeographic distribution of Algerian wild olives (Olea europaea subsp.) Tj ETQq1 1 0.78	84314 rgB1 1.2	[/Overlock]
2	Current Status of Biodiversity Assessment and Conservation of Wild Olive (Olea europaea L. subsp.) Tj ETQq0 0 (D rgBT /Ove	erlock 10 Tf 5

3	The Relevance of Discovering and Recovering the Biodiversity of Apulian Almond Germplasm by Means of Molecular and Phenotypic Markers. Plants, 2022, 11, 574.	3.5	5
4	Quantitatively Unraveling Hierarchy of Factors Impacting Virgin Olive Oil Phenolic Profile and Oxidative Stability. Antioxidants, 2022, 11, 594.	5.1	8
5	Embryo Culture, In Vitro Propagation, and Molecular Identification for Advanced Olive Breeding Programs. Horticulturae, 2022, 8, 36.	2.8	1
6	"Good Wine Makes Good Blood― An Integrated Approach to Characterize Autochthonous Apulian Grapevines as Promising Candidates for Healthy Wines. International Journal of Biological Sciences, 2022, 18, 2851-2866.	6.4	2
7	Morphological and Eco-Geographic Variation in Algerian Wild Olives. Plants, 2022, 11, 1803.	3.5	4
8	The Status of Genetic Resources and Olive Breeding in Tunisia. Plants, 2022, 11, 1759.	3.5	7
9	NMR-based metabolomic study of Apulian Coratina extra virgin olive oil extracted with a combined ultrasound and thermal conditioning process in an industrial setting. Food Chemistry, 2021, 345, 128778.	8.2	11
10	Applications of Microsatellite Markers for the Characterization of Olive Genetic Resources of Tunisia. Genes, 2021, 12, 286.	2.4	10
11	Functional conservation of the grapevine candidate gene INNER NO OUTER for ovule development and seed formation. Horticulture Research, 2021, 8, 29.	6.3	13
12	A TILLING by sequencing approach to identify induced mutations in sunflower genes. Scientific Reports, 2021, 11, 9885.	3.3	12
13	Bioactive Potential of Minor Italian Olive Genotypes from Apulia, Sardinia and Abruzzo. Foods, 2021, 10, 1371.	4.3	7
14	New Insight into the Identity of Italian Grapevine Varieties: The Case Study of Calabrian Germplasm. Agronomy, 2021, 11, 1538.	3.0	4
15	Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods, 2021, 10, 1644.	4.3	47
16	Screening of Olive Biodiversity Defines Genotypes Potentially Resistant to Xylella fastidiosa. Frontiers in Plant Science, 2021, 12, 723879.	3.6	20
17	How to Choose a Good Marker to Analyze the Olive Germplasm (Olea europaea L.) and Derived Products. Genes, 2021, 12, 1474.	2.4	11
18	Antioxidant Efficacy of Olive By-Product Extracts in Human Colon HCT8 Cells. Foods, 2021, 10, 11.	4.3	17

CINZIA MONTEMURRO

#	Article	IF	CITATIONS
19	Lecciana, a New Low-Vigour Olive Cultivar Suitable for Super High Density Orchards and for Nutraceutical EVOO Production. Agronomy, 2021, 11, 2154.	3.0	13
20	Characterization of Penicillium s.s. and Aspergillus sect. nigri causing postharvest rots of pomegranate fruit in Southern Italy. International Journal of Food Microbiology, 2020, 314, 108389.	4.7	17
21	A Hot Spot of Olive Biodiversity in the Tunisian Oasis of Degache. Diversity, 2020, 12, 358.	1.7	8
22	Marginal Grapevine Germplasm from Apulia (Southern Italy) Represents an Unexplored Source of Genetic Diversity. Agronomy, 2020, 10, 563.	3.0	11
23	Re.Ger.O.P.: An Integrated Project for the Recovery of Ancient and Rare Olive Germplasm. Frontiers in Plant Science, 2020, 11, 73.	3.6	29
24	Recovery, Assessment, and Molecular Characterization of Minor Olive Genotypes in Tunisia. Plants, 2020, 9, 382.	3.5	14
25	Serendipitous In Situ Conservation of Faba Bean Landraces in Tunisia: A Case Study. Genes, 2020, 11, 236.	2.4	7
26	Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Scientific Reports, 2020, 10, 2538.	3.3	19
27	Diversity Assessment of Algerian Wild and Cultivated Olives (<i>Olea europeae</i> L.) by Molecular, Morphological, and Chemical Traits. European Journal of Lipid Science and Technology, 2019, 121, 1800302.	1.5	29
28	Genetic Characterization of Apulian Olive Germplasm as Potential Source in New Breeding Programs. Plants, 2019, 8, 268.	3.5	33
29	Genetic Structure Analysis of a Collection of Tunisian Durum Wheat Germplasm. International Journal of Molecular Sciences, 2019, 20, 3362.	4.1	25
30	A Robust DNA Isolation Protocol from Filtered Commercial Olive Oil for PCR-Based Fingerprinting. Foods, 2019, 8, 462.	4.3	16
31	Genotyping by Sequencing of Cultivated Lentil (Lens culinaris Medik.) Highlights Population Structure in the Mediterranean Gene Pool Associated With Geographic Patterns and Phenotypic Variables. Frontiers in Genetics, 2019, 10, 872.	2.3	35
32	Self-Incompatibility Assessment of Some Italian Olive Genotypes (Olea europaea L.) and Cross-Derived Seedling Selection by SSR Markers on Seed Endosperms. Frontiers in Plant Science, 2019, 10, 451.	3.6	23
33	Genotyping-by-sequencing-derived single-nucleotide polymorphism catalog from a grapevine (Vitis) Tj ETQq1 cultivars. Acta Horticulturae, 2019, , 69-76.	0.784314 0.2	rgBT /Overloc 4
34	Valorization of autochthonous Apulian grapevine cultivars for spumante production. Acta Horticulturae, 2019, , 457-462.	0.2	3
35	Molecular characterization of wine grape cultivars from Calabria. Acta Horticulturae, 2019, , 281-286.	0.2	3
36	A new highâ€resolution melting assay for genotyping <i>Alternaria</i> species causing citrus brown spot. Journal of the Science of Food and Agriculture, 2018, 98, 4578-4583.	3.5	16

CINZIA MONTEMURRO

#	Article	IF	CITATIONS
37	A possible role of CTV.20 gene methylation in response to Citrus tristeza virus infection. European Journal of Plant Pathology, 2018, 150, 527-532.	1.7	2
38	The preservation and characterization of Apulian olive germplasm biodiversity. Acta Horticulturae, 2018, , 1-6.	0.2	22
39	GBS-derived SNP catalogue unveiled wide genetic variability and geographical relationships of Italian olive cultivars. Scientific Reports, 2018, 8, 15877.	3.3	84
40	Single nucleotide polymorphism (SNP) diversity in an olive germplasm collection. Acta Horticulturae, 2018, , 27-32.	0.2	14
41	Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques. PLoS ONE, 2018, 13, e0196738.	2.5	12
42	Genetic flow among olive populations within the Mediterranean basin. PeerJ, 2018, 6, e5260.	2.0	49
43	The coexistence of oleaster and traditional varieties affects genetic diversity and population structure in Algerian olive (Olea europaea) germplasm. Genetic Resources and Crop Evolution, 2017, 64, 379-390.	1.6	46
44	Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion. Physiology and Molecular Biology of Plants, 2017, 23, 197-205.	3.1	40
45	Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data. Food Chemistry, 2017, 219, 131-138.	8.2	48
46	A reliable analytical procedure to discover table grape DNA adulteration in industrial wines and musts. Acta Horticulturae, 2017, , 365-370.	0.2	14
47	Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. International Journal of Molecular Sciences, 2017, 18, 377.	4.1	270
48	A Distinct Genetic Cluster in Cultivated Chickpea as Revealed by Genomeâ€wide Marker Discovery and Genotyping. Plant Genome, 2017, 10, plantgenome2016.11.0115.	2.8	54
49	Ampelographic and Molecular Characterisation of Aglianico Accessions (Vitis vinifera L.) Collected in Southern Italy. South African Journal of Enology and Viticulture, 2016, 32, .	0.4	6
50	Chemical and Molecular Characterization of Crude Oil Obtained by Olive-Pomace Recentrifugation. Journal of Chemistry, 2016, 2016, 1-7.	1.9	9
51	A Rapid Assay to Detect Toxigenic Penicillium spp. Contamination in Wine and Musts. Toxins, 2016, 8, 235.	3.4	7
52	Screening Auxin Response, In Vitro Culture Aptitude and Susceptibility to Agrobacterium-Mediated Transformation of Italian Commercial Durum Wheat Varieties. Molecules, 2016, 21, 1440.	3.8	2
53	Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of <scp>DNA</scp> markers. Journal of the Science of Food and Agriculture, 2016, 96, 3642-3657.	3.5	39
54	An enhanced analytical procedure to discover table grape DNA adulteration in industrial musts. Food Control, 2016, 60, 124-130.	5.5	33

#	Article	IF	CITATIONS
55	ECOPHYSIOLOGICAL RESPONSE TO WATER STRESS AND REGULATION OF GENE EXPRESSION FOR A 9-CIS-EPOXYCAROTENOID DIOXYGENASE IN VITIS VINIFERA L. 'ITALIA'. Acta Horticulturae, 2015, , 285-292.	0.2	2
56	A DNA METHYLATION SURVEY OF NCED GENES IN VITIS VINIFERA L. UNDER STRESS CONDITIONS. Acta Horticulturae, 2015, , 277-283.	0.2	2
57	High resolution melting analysis of DNA microsatellites in olive pastes and virgin olive oils obtained by talc addition. European Journal of Lipid Science and Technology, 2015, 117, 2044-2048.	1.5	26
58	Traceability of PDO Olive Oil "Terra di Bari―Using High Resolution Melting. Journal of Chemistry, 2015, 2015, 1-7.	1.9	40
59	Effect of natural-style processing on the oxidative and hydrolytic degradation of the lipid fraction of table olives. Food Control, 2014, 37, 99-103.	5.5	18
60	Fad7 gene identification and fatty acids phenotypic variation in an olive collection by EcoTILLING and sequencing approaches. Plant Physiology and Biochemistry, 2013, 69, 1-8.	5.8	34
61	Validation Assay of p3_VvAGL11 Marker in a Wide Range of Genetic Background for Early Selection of Stenospermocarpy in Vitis vinifera L. Molecular Biotechnology, 2013, 54, 1021-1030.	2.4	37
62	Genetic structure and natural variation associated with host of origin in Penicillium expansum strains causing blue mould. International Journal of Food Microbiology, 2013, 165, 111-120.	4.7	35
63	Traceability of Italian Protected Designation of Origin (PDO) Table Olives by Means of Microsatellite Molecular Markers. Journal of Agricultural and Food Chemistry, 2013, 61, 3068-3073.	5.2	28
64	Characterization of virgin olive oil from Leucocarpa cultivar by chemical and DNA analysis. Food Research International, 2012, 47, 188-193.	6.2	27
65	DNA markers as a tool for genetic traceability of primary product in agri-food chains. Italian Journal of Agronomy, 2012, 7, 45.	1.0	4
66	sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods, 2011, 7, 20.	4.3	53
67	Durum wheat cultivar traceability in PDO Altamura bread by analysis of DNA microsatellites. European Food Research and Technology, 2010, 230, 723-729.	3.3	37
68	Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. italicum from wild Mediterranean germplasm. Industrial Crops and Products, 2010, 32, 639-649.	5.2	72
69	Similarity Patterns and Stability of Environmental Response in Sunflower Hybrids. International Journal of Agronomy, 2010, 2010, 1-9.	1.2	2
70	Microsatellite markers to identify specific alleles in DNA extracted from monovarietal virgin olive oils. European Food Research and Technology, 2009, 229, 375-382.	3.3	43
71	An evaluation of a new approach to the regeneration of Helichrysum italicum (Roth) G. Don, and the molecular characterization of the variation among sets of differently derived regenerants. Cellular and Molecular Biology Letters, 2009, 14, 377-94.	7.0	11
72	SSR-based identification key of cultivars of Olea europaea L. diffused in Southern-Italy. Scientia Horticulturae, 2009, 123, 11-16.	3.6	49

#	Article	IF	CITATIONS
73	DNA Microsatellite Region for a Reliable Quantification of Soft Wheat Adulteration in Durum Wheat-Based Foodstuffs by Real-Time PCR. Journal of Agricultural and Food Chemistry, 2009, 57, 10199-10204.	5.2	38
74	AFLP molecular markers to identify virgin olive oils from single Italian cultivars. European Food Research and Technology, 2008, 226, 1439-1444.	3.3	48
75	SANITARY SELECTION AND MOLECULAR CHARACTERIZATION OF OLIVE CULTIVARS GROWN IN APULIA. Acta Horticulturae, 2008, , 603-609.	0.2	3
76	Detection of Soft Wheat in Semolina and Durum Wheat Bread by Analysis of DNA Microsatellites. Journal of Agricultural and Food Chemistry, 2007, 55, 3312-3318.	5.2	34
77	Effectiveness of Microsatellite DNA Markers in Checking the Identity of Protected Designation of Origin Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 3857-3862.	5.2	67
78	Genetic relationships and cultivar identification among 112 olive accessions using AFLP and SSR markers Journal of Horticultural Science and Biotechnology, 2005, 80, 105-110.	1.9	49
79	Identification of Virgin Olive Oil from Different Cultivars by Analysis of DNA Microsatellites. Journal of Agricultural and Food Chemistry, 2004, 52, 1068-1071.	5.2	66
80	Olive (Olea Europaea L.): Southern-Italian Biodiversity Assessment and Traceability of Processed Products by Means of Molecular Markers. , 0, , .		0
81	Comparative Genetic Analysis of Durum Wheat Landraces and Cultivars Widespread in Tunisia. Frontiers in Plant Science, 0, 13, .	3.6	7