
Xiangning Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4189963/publications.pdf Version: 2024-02-01

XIANGNING LL

#	Article	IF	CITATIONS
1	Continuous subcellular resolution three-dimensional imaging on intact macaque brain. Science Bulletin, 2022, 67, 85-96.	9.0	14
2	Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome. Protein and Cell, 2022, 13, 203-219.	11.0	7
3	VBNet: An end-to-end 3D neural network for vessel bifurcation point detection in mesoscopic brain images. Computer Methods and Programs in Biomedicine, 2022, 214, 106567.	4.7	5
4	A spatial and cellular distribution of rabies virus infection in the mouse brain revealed by fMOST and singleâ€cell RNA sequencing. Clinical and Translational Medicine, 2022, 12, e700.	4.0	6
5	Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer's disease. Nature Communications, 2022, 13, 998.	12.8	28
6	Multiscale reconstruction of various vessels in the intact murine liver lobe. Communications Biology, 2022, 5, 260.	4.4	7
7	Whole-Brain Direct Inputs to and Axonal Projections from Excitatory and Inhibitory Neurons in the Mouse Primary Auditory Area. Neuroscience Bulletin, 2022, 38, 576-590.	2.9	7
8	AIE-based fluorescent micro-optical sectioning tomography for automatic 3D mapping of β-amyloid plaques in Tg mouse whole brain. Chemical Engineering Journal, 2022, 446, 136840.	12.7	9
9	The Mesoscopic Connectome of the Cholinergic Pontomesencephalic Tegmentum. Frontiers in Neuroanatomy, 2022, 16, .	1.7	6
10	Multi-perspective label based deep learning framework for cerebral vasculature segmentation in whole-brain fluorescence images. Biomedical Optics Express, 2022, 13, 3657.	2.9	3
11	DeepMapi: a Fully Automatic Registration Method for Mesoscopic Optical Brain Images Using Convolutional Neural Networks. Neuroinformatics, 2021, 19, 267-284.	2.8	12
12	Delineating the organization of projection neuron subsets in primary visual cortex with multiple fluorescent rabies virus tracing. Brain Structure and Function, 2021, 226, 951-961.	2.3	0
13	High-definition imaging using line-illumination modulation microscopy. Nature Methods, 2021, 18, 309-315.	19.0	76
14	Plastic embedding for precise imaging of large-scale biological tissues labeled with multiple fluorescent dyes and proteins. Biomedical Optics Express, 2021, 12, 6730.	2.9	3
15	Morphological diversity of single neurons in molecularly defined cell types. Nature, 2021, 598, 174-181.	27.8	180
16	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
17	Cellular anatomy of the mouse primary motor cortex. Nature, 2021, 598, 159-166.	27.8	117
18	The mouse cortico–basal ganglia–thalamic network. Nature, 2021, 598, 188-194.	27.8	126

XIANGNING LI

#	Article	IF	CITATIONS
19	Whole-brain connectivity atlas of glutamatergic and GABAergic neurons in the mouse dorsal and median raphe nuclei. ELife, 2021, 10, .	6.0	19
20	High-Throughput Strategy for Profiling Sequential Section With Multiplex Staining of Mouse Brain. Frontiers in Neuroanatomy, 2021, 15, 771229.	1.7	4
21	A Whole-Brain Connectivity Map of VTA and SNc Glutamatergic and GABAergic Neurons in Mice. Frontiers in Neuroanatomy, 2021, 15, 818242.	1.7	9
22	Scalable Resin Embedding Method for Large-Volume Brain Tissues with High Fluorescence Preservation Capacity. IScience, 2020, 23, 101717.	4.1	5
23	Whole-Brain Three-Dimensional Profiling Reveals Brain Region Specific Axon Vulnerability in 5xFAD Mouse Model. Frontiers in Neuroanatomy, 2020, 14, 608177.	1.7	12
24	Paraffin-embedding for large volume bio-tissue. Scientific Reports, 2020, 10, 12639.	3.3	20
25	Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Scientific Reports, 2020, 10, 12209.	3.3	4
26	DeepBrainSeg: Automated Brain Region Segmentation for Micro-Optical Images With a Convolutional Neural Network. Frontiers in Neuroscience, 2020, 14, 179.	2.8	14
27	MACS: Rapid Aqueous Clearing System for 3D Mapping of Intact Organs. Advanced Science, 2020, 7, 1903185.	11.2	52
28	Ventral Hippocampal-Prefrontal Interaction Affects Social Behavior via Parvalbumin Positive Neurons in the Medial Prefrontal Cortex. IScience, 2020, 23, 100894.	4.1	60
29	Prefrontal Cortex Corticotropin-Releasing Factor Neurons Control Behavioral Style Selection under Challenging Situations. Neuron, 2020, 106, 301-315.e7.	8.1	69
30	A Whole-brain Map of Long-range Inputs to GABAergic Interneurons in the Mouse Caudal Forelimb Area. Neuroscience Bulletin, 2020, 36, 493-505.	2.9	16
31	Mapping the Architecture of Ferret Brains at Single-Cell Resolution. Frontiers in Neuroscience, 2020, 14, 322.	2.8	2
32	Continuous imaging of large-volume tissues with a machinable optical clearing method at subcellular resolution. Biomedical Optics Express, 2020, 11, 7132.	2.9	5
33	Maintenance of Fluorescence During Paraffin Embedding of Fluorescent Protein-Labeled Specimens. Frontiers in Neuroscience, 2019, 13, 752.	2.8	16
34	A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nature Neuroscience, 2019, 22, 1357-1370.	14.8	132
35	Pinpointing Morphology and Projection of Excitatory Neurons in Mouse Visual Cortex. Frontiers in Neuroscience, 2019, 13, 912.	2.8	6
36	Whole Brain Mapping of Long-Range Direct Input to Glutamatergic and GABAergic Neurons in Motor Cortex. Frontiers in Neuroanatomy, 2019, 13, 44.	1.7	26

XIANGNING LI

#	Article	IF	CITATIONS
37	Connectivity properties in the prefrontal cortex during working memory: a near-infrared spectroscopy study. Journal of Biomedical Optics, 2019, 24, 1.	2.6	22
38	RTF: a rapid and versatile tissue optical clearing method. Scientific Reports, 2018, 8, 1964.	3.3	53
39	Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 415-420.	7.1	241
40	Simultaneous Acquisition of Multicolor Information From Neural Circuits in Resin-Embedded Samples. Frontiers in Neuroscience, 2018, 12, 885.	2.8	17
41	A corticopontine circuit for initiation of urination. Nature Neuroscience, 2018, 21, 1541-1550.	14.8	62
42	NDDN: A Cloud-Based Neuroinformation Database for Developing Neuronal Networks. Journal of Healthcare Engineering, 2018, 2018, 1-8.	1.9	1
43	Early-stage reduction of the dendritic complexity in basolateral amygdala of a transgenic mouse model of Alzheimer's disease. Biochemical and Biophysical Research Communications, 2017, 486, 679-685.	2.1	9
44	A platform for efficient identification of molecular phenotypes of brain-wide neural circuits. Scientific Reports, 2017, 7, 13891.	3.3	27
45	A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain. Frontiers in Neuroanatomy, 2017, 11, 63.	1.7	86
46	Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain. Frontiers in Neuroanatomy, 2017, 11, 128.	1.7	176
47	TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images. Frontiers in Neural Circuits, 2017, 11, 51.	2.8	52
48	3D visualization of the ascending pathway of motor nucleus with viral infection and fluorescent imaging. , 2017, , .		0
49	Development of a plastic embedding method for preservation of red fluorescent protein. , 2017, , .		0
50	Scalable embedding method with hydrogel for optical imaging of fluorescent samples. , 2017, , .		0
51	<i>In Vivo</i> Visualization of Tumor Antigen-containing Microparticles Generated in Fluorescent-protein-elicited Immunity. Theranostics, 2016, 6, 1453-1466.	10.0	23
52	High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nature Communications, 2016, 7, 12142.	12.8	295
53	Visible rodent brain-wide networks at single-neuron resolution. Frontiers in Neuroanatomy, 2015, 9, 70.	1.7	36
54	GIT1 and βPIX Are Essential for GABA A Receptor Synaptic Stability and Inhibitory Neurotransmission. Cell Reports, 2014, 9, 298-310.	6.4	56

XIANGNING LI

#	Article	IF	CITATIONS
55	Restoration of Glutamatergic Transmission by Dopamine D4 Receptors in Stressed Animals. Journal of Biological Chemistry, 2013, 288, 26112-26120.	3.4	17
56	Developing neuronal networks: Self-organized criticality predicts the future. Scientific Reports, 2013, 3, 1081.	3.3	23
57	Repeated Stress Causes Cognitive Impairment by Suppressing Glutamate Receptor Expression and Function in Prefrontal Cortex. Neuron, 2012, 73, 962-977.	8.1	456
58	Repeat burst for timing code in excitatory neuronal network on multi-electrode array. , 2010, , .		0
59	Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays. Biomedical Microdevices, 2010, 12, 153-158.	2.8	9
60	Spatial-temporal dynamics of chaotic behavior in cultured hippocampal networks. Physical Review E, 2010, 81, 061903.	2.1	6
61	Nonlinear characteristics in the spontaneous activities of cultured neuronal networks. Chinese Science Bulletin, 2010, 55, 7-14.	0.7	2
62	Database for Development of the Cultured Neuronal Network. , 2009, , .		0
63	Homeostatically regulated synchronized oscillations induced by short-term tetrodotoxin treatment in cultured neuronal network. BioSystems, 2009, 95, 61-66.	2.0	12
64	The generation of the synchronized burst in the cultured neuronal networks. , 2009, , .		11
65	An integrative analysis platform for multiple neural spike train data. Journal of Neuroscience Methods, 2008, 172, 303-311.	2.5	11
66	Monitoring Calcium Concentration in Neurons with Cameleon. Journal of Bioscience and Bioengineering, 2008, 105, 106-109.	2.2	16
67	CULTURE OF GABAERGIC NEURONS FROM TRANSGENIC MICE ON MULTI-ELECTRODE ARRAY. , 2008, , .		Ο
68	Long-term recording on multi-electrode array reveals degraded inhibitory connection in neuronal network development. Biosensors and Bioelectronics, 2007, 22, 1538-1543.	10.1	34
69	Dynamics of Learning in Cultured Neuronal Networks with Antagonists of Glutamate Receptors. Biophysical Journal, 2007, 93, 4151-4158.	0.5	18
70	Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays. Biosensors and Bioelectronics, 2007, 22, 2976-2982.	10.1	41
71	Monitoring calcium concentration in dendritic spines of cultured hippocampal neurons with cameleons. , 2005, , .		0
72	Synchronized spontaneous spikes on multi-electrode array show development of cultured neuronal		5

network. , 2005, 2005, 2134-7.