Paul Graham

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/4188869/publications.pdf
Version: 2024-02-01

Recent advances in evolutionary and bio-inspired adaptive robotics: Exploiting embodied dynamics.
3.3 Applied Intelligence, 2021, 51, 6467-6496.

A unified mechanism for innate and learned visual landmark guidance in the insect central complex.
1.5

PLoS Computational Biology, 2021 , 17, e1009383.
28

4 Exploring the robustness of insect-inspired visual navigation for flying robots. , 2020, , .
0
Mushroom Bodies Are Required for Learned Visual Navigation, but Not for Innate Visual Behavior, in
Ants. Current Biology, 2020, 30, 3438-3443.e2.
1.8

Connecting brain to behaviour: a role for general purpose steering circuits in insect orientation?.
Journal of Experimental Biology, 2020, 223, .
$0.8 \quad 39$

Multimodal influences on learning walks in desert ants (Cataglyphis fortis). Journal of Comparative
$7 \quad$ Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 701-709.
$0.7 \quad 5$

8 Multimodal interactions in insect navigation. Animal Cognition, 2020, 23, 1129-1141.
0.9

68

9 Dynamic multimodal interactions in navigating wood ants: What do path details tell us about cue
integration?. Journal of Experimental Biology, 2020, 223, .
0.8

18

10 Insect Inspired View Based Navigation Exploiting Temporal Information. Lecture Notes in Computer Science, 2020, , 204-216.
$1.0 \quad 5$

11 Snapshot Navigation in the Wavelet Domain. Lecture Notes in Computer Science, 2020, , 245-256.
$1.0 \quad 3$

12 Rapid Aversive and Memory Trace Learning during Route Navigation in Desert Ants. Current Biology,
2020, 30, 1927-1933.e2.
1.8

44

A motion compensation treadmill for untethered wood ants (<i>Formica rufa</i>): evidence for
13 transfer of orientation memories from free-walking training. Journal of Experimental Biology, 2020,
0.8

8
223,

14 Spatial Cognition: Allowing Natural Behaviours toÂFlourish in the Lab. Current Biology, 2019, 29, R639-R641.
1.8

0
Insect-Inspired Visual Navigation On-Board an Autonomous Robot: Real-World Routes Encoded in a
Single Layer Network. , 2019, , .
15

5

Running paths to nowhere: repetition of routes shows how navigating ants modulate online the weights accorded to cues. Animal Cognition, 2019, 22, 213-222.

```
1 9 \text { View-Based Homing. , 2018, , 1-3.}
```

Vision for navigation: What can we learn from ants?. Arthropod Structure and Development, 2017, 46,
$718-722$.

22 Social Life in Arid Environments: The Case Study of <i>Cataglyphis</i> Ants. Annual Review of
23

Neural coding in the visual system of Drosophila melanogaster: How do small neural populations
1.5
support visually guided behaviours?. PLoS Computational Biology, 2017, 13, e1005735.
15

Using Deep Autoencoders to Investigate Image Matching in Visual Navigation. Lecture Notes in
Computer Science, 2017, , 465-474.
1.0

3

25 Insect Orientation: The Travails of Going Straight. Current Biology, 2016, 26, R461-R463.
1.8

Land-use and sustainability under intersecting global change and domestic policy scenarios:
Trajectories for Australia to 2050. Clobal Environmental Change, 2016, 38, 130-152.

How do field of view and resolution affect the information content of panoramic scenes for visual
27 navigation? A computational investigation. Journal of Comparative Physiology A: Neuroethology,
0.7

30
Sensory, Neural, and Behavioral Physiology, 2016, 202, 87-95.

The Sensory Ecology of Ant Navigation: From Natural Environments to Neural Mechanisms. Annual
Review of Entomology, 2016, 61, 63-76.
5.7

97

29 Insect-Inspired Visual Navigation for Flying Robots. Lecture Notes in Computer Science, 2016, , 263-274.
1.0

3

30 Insect-Inspired Visual Systems and Visually Guided Behavior., 2016, , 1646-1653.
0

31 Insect-Inspired Navigation Algorithm for an Aerial Agent Using Satellite Imagery. PLoS ONE, 2015, 10, e0122077.

32 Insect Navigation: Do Honeybees Learn to Follow Highways?. Current Biology, 2015, 25, R240-R242.
1.8

21

> Using Neural Networks to Understand the Information That Guides Behavior: A Case Study in Visual Navigation. Methods in Molecular Biology, 2015, 1260, 227-244.
$0.4 \quad 6$

34 Desert ants use olfactory scenes for navigation. Animal Behaviour, 2015, 106, 99-105.
0.8

51

[^0]1.9

58
Scene perception and the visual control of travel direction in navigating wood ants. Philosophical
Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130035.

40 What is the relationship between visual environment and the form of ant learning-walks? An in silico

41	Insect Vision: Emergence of Pattern Recognition from Coarse Encoding. Current Biology, 2014, 24, R78-R80.	1.8	17
42	Desert Ants Locate Food by Combining High Sensitivity to Food Odors with Extensive Crosswind Runs. Current Biology, 2014, 24, 960-964.	1.8	84
43	Still no convincing evidence for cognitive map use by honeybees. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4396-7.	3.3	61
44	Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 615-626.	0.7	75
45	Phase-Dependent Visual Control of the Zigzag Paths of Navigating Wood Ants. Current Biology, 2013, 23, 2393-2399.	1.8	28

47 Snapshots in ants? New interpretations of paradigmatic experiments. Journal of Experimental Biology,
2013, 216, 1766-70.
$0.8 \quad 49$

How Active Vision Facilitates Familiarity-Based Homing. Lecture Notes in Computer Science, 2013, , 427-430.

How might ants use panoramic views for route navigation?. Journal of Experimental Biology, 2011, 214,

57	Image-matching during ant navigation occurs through saccade-like body turns controlled by learned visual features. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16348-16353.	3.3	100
58	A Motor Component to the Memories of Habitual Foraging Routes in Wood Ants?. Current Biology, 2009, 19, 115-121.	1.8	42
59	Ants use the panoramic skyline as a visual cue during navigation. Current Biology, 2009, 19, R935-R937.	1.8	204
60	What can be learnt from analysing insect orientation flights using probabilistic SLAM?. Biological Cybernetics, 2009, 101, 169-182.	0.6	16
61	Which portion of the natural panorama is used for view-based navigation in the Australian desert ant?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 681-689.	0.7	76
62	Linked Local Visual Navigation and Robustness to Motor Noise and Route Displacement. Lecture Notes in Computer Science, 2008, , 179-188.	1.0	5
63	Novel landmark-guided routes in ants. Journal of Experimental Biology, 2007, 210, 2025-2032.	0.8	46

$0.8 \quad 10$

Applying the Grid to 3D capture technology. Concurrency Computation Practice and Experience, 2007, 19, 235-249.
1.4

0

The binding and recall of snapshot memories in wood ants (Formica rufa L.). Journal of Experimental

The influence of beacon-aiming on the routes of wood ants. Journal of Experimental Biology, 2003, 206, 535-541.

[^0]: 35
 Modelling Australian land use competition and ecosystem services with food price feedbacks at high
 spatial resolution. Environmental Modelling and Software, 2015, 69, 141-154.

