Ziya Kaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188863/publications.pdf

Version: 2024-02-01

		126907	123424
67	4,121	33	61
papers	citations	h-index	g-index
67	67	67	5357
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	LNA oligonucleotide mediates an antiâ€inflammatory effect in autoimmune myocarditis via targeting lactate dehydrogenase B. Immunology, 2022, 165, 158-170.	4.4	4
2	Mitigated viral myocarditis in A/J mice by the immunoproteasome inhibitor ONX 0914 depends on inhibition of systemic inflammatory responses in CoxsackievirusB3 infection. Basic Research in Cardiology, 2021, 116, 7.	5.9	8
3	Relationship between markers of inflammation and hemodynamic stress and death in patients with out-of-hospital cardiac arrest. Scientific Reports, 2021, 11, 9954.	3.3	4
4	Comparative Transcriptomics of Immune Checkpoint Inhibitor Myocarditis Identifies Guanylate Binding Protein 5 and 6 Dysregulation. Cancers, 2021, 13, 2498.	3.7	23
5	Exploration of Analgesia with Tramadol in the Coxsackievirus B3 Myocarditis Mouse Model. Viruses, 2021, 13, 1222.	3.3	2
6	Development of a new mouse model for coxsackievirus-induced myocarditis by attenuating coxsackievirus B3 virulence in the pancreas. Cardiovascular Research, 2020, 116, 1756-1766.	3.8	16
7	Myocarditis and Dilated Cardiomyopathy. , 2020, , 1269-1284.		O
8	COVID-19 among heart transplant recipients in Germany: a multicenter survey. Clinical Research in Cardiology, 2020, 109, 1531-1539.	3.3	60
9	Bacterial polyphosphates interfere with the innate host defense to infection. Nature Communications, 2020, 11, 4035.	12.8	65
10	ONX 0914 Lacks Selectivity for the Cardiac Immunoproteasome in CoxsackievirusB3 Myocarditis of NMRI Mice and Promotes Virus-Mediated Tissue Damage. Cells, 2020, 9, 1093.	4.1	5
11	Familial Recurrent Myocarditis Triggered by Exercise in Patients With a Truncating Variant of the Desmoplakin Gene. Journal of the American Heart Association, 2020, 9, e015289.	3.7	39
12	Heart-Specific Immune Responses in an Animal Model of Autoimmune-Related Myocarditis Mitigated by an Immunoproteasome Inhibitor and Genetic Ablation. Circulation, 2020, 141, 1885-1902.	1.6	53
13	Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Science Advances, 2020, 6, eaay1109.	10.3	27
14	Cardiac Troponin I autoantibodies and their potential role in cardiac remodelling. EBioMedicine, 2019, 48, 11-12.	6.1	3
15	Adiponectin deficiency has no effect in murine autoimmune myocarditis. Cytokine, 2019, 116, 139-149.	3.2	4
16	FN14 Signaling Plays a Pathogenic Role in a Mouse Model of Experimental Autoimmune Myocarditis. Journal of Cardiac Failure, 2019, 25, 674-685.	1.7	6
17	IL-17A in Psoriasis and Beyond: Cardiovascular and Metabolic Implications. Frontiers in Immunology, 2019, 10, 3096.	4.8	122
18	The immunoproteasomeâ€specific inhibitor ONX 0914 reverses susceptibility to acute viral myocarditis. EMBO Molecular Medicine, 2018, 10, 200-218.	6.9	48

#	Article	IF	CITATIONS
19	Cardiovascular Involvement in Chronic Hepatitis C Virus Infections $\hat{a} \in \text{``Insight from Novel Antiviral Therapies. Journal of Clinical and Translational Hepatology, 2018, 6, 1-7.}$	1.4	11
20	Procedural advantages of aÂnovel coronary stent design with ultra-thin struts and bioabsorbable abluminal polymer coating in an all-comers registry. Postepy W Kardiologii Interwencyjnej, 2018, 14, 240-246.	0.2	2
21	High incidence of cardiac dysfunction and response to antiviral treatment in patients with chronic hepatitis C virus infection. Clinical Research in Cardiology, 2017, 106, 551-556.	3.3	19
22	Mechanisms of Autoantibody-Induced Pathology. Frontiers in Immunology, 2017, 8, 603.	4.8	377
23	Identification of novel antigens contributing to autoimmunity in cardiovascular diseases. Clinical Immunology, 2016, 173, 64-75.	3.2	11
24	Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E155-64.	7.1	130
25	Activated human B cells induce inflammatory fibroblasts with cartilage-destructive properties and become functionally suppressed in return. Annals of the Rheumatic Diseases, 2016, 75, 924-932.	0.9	23
26	The Novel Extracellular Cyclophilin A (CyPA) - Inhibitor MM284 Reduces Myocardial Inflammation and Remodeling in a Mouse Model of Troponin I -Induced Myocarditis. PLoS ONE, 2015, 10, e0124606.	2.5	37
27	Anti-troponin I antibodies in renal transplant patients. Revista Portuguesa De Cardiologia, 2015, 34, 85-89.	0.5	9
28	Anti-troponin I antibodies in renal transplant patients. Revista Portuguesa De Cardiologia (English) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
29	Evidence of autoantibodies against cardiac troponin I and sarcomeric myosin in peripartum cardiomyopathy. Basic Research in Cardiology, 2015, 110, 60.	5.9	51
30	Mouse Models of Autoimmune Diseases - Autoimmune Myocarditis. Current Pharmaceutical Design, 2015, 21, 2498-2512.	1.9	28
31	Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovascular Research, 2014, 104, 15-23.	3.8	68
32	Myocarditis and Dilated Cardiomyopathy. , 2014, , 1033-1048.		0
33	Provocation of an Autoimmune Response to Cardiac Voltage-Gated Sodium Channel NaV1.5 Induces Cardiac Conduction Defects in Rats. Journal of the American College of Cardiology, 2013, 62, 340-349.	2.8	25
34	Mucosal tolerance induction in autoimmune myocarditis and myocardial infarction. International Journal of Cardiology, 2013, 162, 245-252.	1.7	4
35	Cholinergic control of inflammation in cardiovascular diseases. Trends in Cardiovascular Medicine, 2013, 23, 46-51.	4.9	9
36	Partially Reversible Cardiomyopathy after Renal Transplant Associated with Anti-Troponin I Antibodies. Cardiology, 2013, 126, 173-174.	1.4	8

#	Article	IF	Citations
37	Autoantibodies in Heart Failure and Cardiac Dysfunction. Circulation Research, 2012, 110, 145-158.	4.5	142
38	Successful Use of mRNAâ€Nucleofection for Overexpression of Interleukinâ€10 in Murine Monocytes/Macrophages for Antiâ€inflammatory Therapy in a Murine Model of Autoimmune Myocarditis. Journal of the American Heart Association, 2012, 1, e003293.	3.7	30
39	HMGB1 Is Associated with Atherosclerotic Plaque Composition and Burden in Patients with Stable Coronary Artery Disease. PLoS ONE, 2012, 7, e52081.	2.5	58
40	The proteoglycan biglycan enhances antigenâ€specific T cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. FASEB Journal, 2012, 26, 136.3.	0.5	0
41	Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy. Basic Research in Cardiology, 2011, 106, 25-35.	5.9	37
42	Role of the Cholinergic Antiinflammatory Pathway in Murine Autoimmune Myocarditis. Circulation Research, 2011, 109, 130-140.	4.5	57
43	Autoimmunity against cardiac troponin I in ischaemia reperfusion injury. European Journal of Heart Failure, 2011, 13, 1052-1059.	7.1	17
44	The Proteoglycan Biglycan Enhances Antigen-Specific T Cell Activation Potentially via MyD88 and TRIF Pathways and Triggers Autoimmune Perimyocarditis. Journal of Immunology, 2011, 187, 6217-6226.	0.8	46
45	Comparison of IL-10 and MCP-1-7ND gene transfer with AAV9 vectors for protection from murine autoimmune myocarditis. Cardiovascular Research, 2011, 91, 116-123.	3.8	12
46	Role of autoimmunity in dilated cardiomyopathy. Basic Research in Cardiology, 2010, 105, 7-8.	5.9	7
47	Cardiac troponins and autoimmunity: Their role in the pathogenesis of myocarditis and of heart failure. Clinical Immunology, 2010, 134, 80-88.	3.2	66
48	The Role of HMGB1/RAGE in Inflammatory Cardiomyopathy. Seminars in Thrombosis and Hemostasis, 2010, 36, 185-194.	2.7	63
49	Autoimmune myocarditis: Past, present and future. Journal of Autoimmunity, 2009, 33, 282-289.	6.5	75
50	Absence of auto-antibodies against cardiac troponin I predicts improvement of left ventricular function after acute myocardial infarction. European Heart Journal, 2008, 29, 1949-1955.	2.2	96
51	High-Mobility Group Box-1 in Ischemia-Reperfusion Injury of the Heart. Circulation, 2008, 117, 3216-3226.	1.6	554
52	Identification of Cardiac Troponin I Sequence Motifs Leading to Heart Failure by Induction of Myocardial Inflammation and Fibrosis. Circulation, 2008, 118, 2063-2072.	1.6	97
53	Absence of Autoâ€Antibodies against Cardiac Troponin I Predicts Improvement of Left Ventricular Function after Acute Myocardial Infarction. FASEB Journal, 2008, 22, 668.28.	0.5	0
54	Autoantibodies against Cardiac Troponin I in Patients with Dilated Cardioâ€myopathy Predict Improvement of Cardiac Function by Immunoadsorption. FASEB Journal, 2008, 22, 668.29.	0.5	0

#	Article	IF	Citations
55	Response to Letter Regarding Article, "Cardiac Troponin I but Not Cardiac Troponin T Induces Severe Autoimmune Inflammation in the Myocardium― Circulation, 2007, 115, .	1.6	0
56	Cardiac Troponin I but Not Cardiac Troponin T Induces Severe Autoimmune Inflammation in the Myocardium. Circulation, 2006, 114, 1693-1702.	1.6	210
57	Complement Receptor 1 and 2 Deficiency Increases Coxsackievirus B3-Induced Myocarditis, Dilated Cardiomyopathy, and Heart Failure by Increasing Macrophages, IL- $1\hat{l}^2$, and Immune Complex Deposition in the Heart. Journal of Immunology, 2006, 176, 3516-3524.	0.8	71
58	Complement receptors regulate lipopolysaccharide-induced T-cell stimulation. Immunology, 2005, 114, 493-498.	4.4	20
59	Impaired up-regulation of CD25 on CD4+ T cells in IFN-Â knockout mice is associated with progression of myocarditis to heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 180-185.	7.1	88
60	Critical Role for Monocyte Chemoattractant Protein-1 and Macrophage Inflammatory Protein-1α in Induction of Experimental Autoimmune Myocarditis and Effective Anti–Monocyte Chemoattractant Protein-1 Gene Therapy. Circulation, 2005, 112, 3400-3407.	1.6	139
61	Myocardial biopsy based classification and treatment in patients with dilated cardiomyopathy. International Journal of Cardiology, 2005, 104, 92-100.	1.7	45
62	Cutting Edge: A Critical Role for IL-10 in Induction of Nasal Tolerance in Experimental Autoimmune Myocarditis. Journal of Immunology, 2002, 168, 1552-1556.	0.8	72
63	From Infection to Autoimmunity. Journal of Autoimmunity, 2001, 16, 175-186.	6.5	294
64	Experimental Autoimmune Myocarditis in A/J mice Is an Interleukin-4-Dependent Disease with a Th2 Phenotype. American Journal of Pathology, 2001, 159, 193-203.	3.8	164
65	Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nature Immunology, 2001, 2, 739-745.	14.5	161
66	Interleukin-12 Receptor/STAT4 Signaling Is Required for the Development of Autoimmune Myocarditis in Mice by an Interferon-γ–Independent Pathway. Circulation, 2001, 104, 3145-3151.	1.6	150
67	Nasal administration of cardiac myosin suppresses autoimmune myocarditis in mice. Journal of the American College of Cardiology, 2000, 36, 1992-1999.	2.8	43