Fabiana Perna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188763/publications.pdf

Version: 2024-02-01

361413 477307 4,696 30 20 29 citations h-index g-index papers 31 31 31 9114 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation. Cancer Cell, 2011, 20, 11-24.	16.8	1,105
2	Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell, 2015, 28, 415-428.	16.8	641
3	ASXL1 Mutations Promote Myeloid Transformation through Loss of PRC2-Mediated Gene Repression. Cancer Cell, 2012, 22, 180-193.	16.8	504
4	Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nature Biotechnology, 2013, 31, 928-933.	17.5	362
5	Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nature Chemical Biology, 2011, 7, 818-826.	8.0	240
6	Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell, 2017, 32, 506-519.e5.	16.8	240
7	JAK2V617F-Mediated Phosphorylation of PRMT5 Downregulates Its Methyltransferase Activity and Promotes Myeloproliferation. Cancer Cell, 2011, 19, 283-294.	16.8	225
8	The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation. Science, 2011, 333, 765-769.	12.6	200
9	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	30.7	179
10	Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nature Communications, 2016, 7, 10442.	12.8	144
11	Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nature Biotechnology, 2015, 33, 646-655.	17.5	130
12	Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. Journal of Clinical Investigation, 2015, 125, 3532-3544.	8.2	120
13	Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. Cancer Research, 2017, 77, 1927-1941.	0.9	112
14	Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nature Reviews Cancer, 2016, 16, 359-372.	28.4	93
15	PRMT4 Blocks Myeloid Differentiation by Assembling a Methyl-RUNX1-Dependent Repressor Complex. Cell Reports, 2013, 5, 1625-1638.	6.4	77
16	L3MBTL1 polycomb protein, a candidate tumor suppressor in del(20q12) myeloid disorders, is essential for genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22552-22557.	7.1	76
17	Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: possible role in 20qâ^² polycythemia vera. Blood, 2010, 116, 2812-2821.	1.4	51
18	Safety and efficacy of plerixafor dose escalation for the mobilization of CD34 ⁺ hematopoietic progenitor cells in patients with sickle cell disease: interim results. Haematologica, 2018, 103, 770-777.	3.5	47

#	Article	IF	CITATIONS
19	MEF Promotes Stemness in the Pathogenesis of Gliomas. Cell Stem Cell, 2012, 11, 836-844.	11.1	37
20	ETV6-ABL1-positive "chronic myeloid leukemia": clinical and molecular response to tyrosine kinase inhibition. Haematologica, 2011, 96, 342-343.	3. 5	24
21	Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple myeloma. Oncogene, 2021, 40, 6130-6138.	5.9	21
22	Myeloid leukemia switch as immune escape from CD19 chimeric antigen receptor (CAR) therapy. Translational Cancer Research, 2016, 5, S221-S225.	1.0	21
23	L3MBTL1 Deficiency Directs the Differentiation of Human Embryonic Stem Cells Toward Trophectoderm. Stem Cells and Development, 2011, 20, 1889-1900.	2.1	10
24	The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 658-669.	4.8	7
25	Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treatment and Research, 2022, 183, 225-254.	0.5	6
26	Safety Starts with Selecting the Targets. Molecular Therapy, 2021, 29, 424-425.	8.2	5
27	Mapping the High-Risk Multiple Myeloma Cell Surface Proteome Identifies T-Cell Inhibitory Receptors for Immune Targeting. Blood, 2021, 138, 265-265.	1.4	3
28	Novel Immune-Based treatments for Diffuse Large B-Cell Lymphoma: The Post-CAR T Cell Era. Frontiers in Immunology, 0, 13 , .	4.8	3
29	Probing the AML Surfaceome for Chimeric Antigen Receptor (CAR) Targets. Blood, 2016, 128, 526-526.	1.4	1
30	JAK2V617F-Mediated Phosphorylation of PRMT5 Down-Regulates Its Methyltransferase Activity and Promotes Myeloproliferation. Blood, 2010, 116, 794-794.	1.4	0