Miran Ha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188578/publications.pdf

Version: 2024-02-01

471509 552781 2,538 24 17 26 citations h-index g-index papers 26 26 26 2621 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nature Energy, 2018, 3, 773-782.	39.5	542
2	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	19.5	538
3	Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on Nâ€Doped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	19.5	224
4	Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy and Environmental Science, 2020, 13, 3447-3458.	30.8	197
5	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	30.8	176
6	Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2000531.	14.9	153
7	Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nature Communications, 2019, 10, 5195.	12.8	120
8	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	20.2	102
9	Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 6679-6689.	10.3	74
10	Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for Water Splitting via Distinctive Mechanistic Pathways. Advanced Energy Materials, 2021, 11, 2102388.	19.5	73
11	Modulation of Cu and Rh single-atoms and nanoparticles for high-performance hydrogen evolution activity in acidic media. Journal of Materials Chemistry A, 2021, 9, 10326-10334.	10.3	70
12	Alâ€Doping Driven Suppression of Capacity and Voltage Fadings in 4dâ€Element Containing Liâ€Ionâ€Battery Cathode Materials: Machine Learning and Density Functional Theory. Advanced Energy Materials, 2022, 12, .	19.5	42
13	Pt-like hydrogen evolution on a V ₂ O ₅ /Ni(OH) ₂ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 15794-15800.	10.3	31
14	Unveiling the Role of Charge Transfer in Enhanced Electrochemical Nitrogen Fixation at Single-Atom Catalysts on BX Sheets (X = As, P, Sb). Journal of Physical Chemistry Letters, 2022, 13, 4530-4537.	4.6	29
15	A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 3511-3519.	10.3	21
16	Size-dependent conformational change in halogen–π interaction: from benzene to graphene. Chemical Communications, 2017, 53, 6140-6143.	4.1	19
17	Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons. Journal of Physical Chemistry A, 2021, 125, 9414-9420.	2.5	19
18	Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage. Journal of Materials Chemistry A, 2018, 6, 15961-15967.	10.3	17

#	Article	IF	CITATION
19	Reactivity and Curing Efficiency of Isocyanate Cross-Linkers with Imidazole-Based Blocking Agents for Low-Temperature Curing of Automotive Clearcoats. Coatings, 2020, 10, 974.	2.6	13
20	Adsorption of Carbon Tetrahalides on Coronene and Graphene. Journal of Physical Chemistry C, 2017, 121, 14968-14974.	3.1	11
21	Effect of isocyanate crosslinkers blocked with amine derivatives on rheological and crosslinking characteristics of automotive clearcoats. Korea Australia Rheology Journal, 2021, 33, 37-43.	1.7	6
22	Sparse Gaussian Process Regression-Based Machine Learned First-Principles Force-Fields for Saturated, Olefinic, and Aromatic Hydrocarbons. ACS Physical Chemistry Au, 2022, 2, 260-264.	4.0	5
23	Dual-curable isocyanate crosslinking agents blocked by methacrylate-functionalized pyrazoles with lower curing temperature. Progress in Organic Coatings, 2021, 161, 106501.	3.9	4
24	Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials [*] . Journal of Physics Condensed Matter, 2022, 34, 344007.	1.8	2