Neil S Sheerin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. American Journal of Transplantation, 2022, 22, 1088-1100.	4.7	15
2	Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. American Journal of Transplantation, 2021, 21, 1402-1414.	4.7	46
3	Cell therapy during machine perfusion. Transplant International, 2021, 34, 49-58.	1.6	9
4	Motion correction of free-breathing magnetic resonance renography using model-driven registration. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 805-822.	2.0	2
5	MiR-126-3p Is Dynamically Regulated in Endothelial-to-Mesenchymal Transition during Fibrosis. International Journal of Molecular Sciences, 2021, 22, 8629.	4.1	13
6	c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nature Metabolism, 2020, 2, 1350-1367.	11.9	16
7	Obesity, Sex, Race, and Early Onset Hypertension. Hypertension, 2020, 76, 859-865.	2.7	10
8	Dual MicroRNA Blockade Increases Expression of Antioxidant Protective Proteins: Implications for Ischemia-Reperfusion Injury. Transplantation, 2020, 104, 1853-1861.	1.0	13
9	Immunosuppression-induced clonal T-cell lymphoproliferative disease causing severe diarrhoea mimicking coeliac disease following renal transplantation: a case report. BMC Nephrology, 2020, 21, 220.	1.8	1
10	The impact of severe acute kidney injury requiring renal replacement therapy on survival and renal function of heart transplant recipients – a UK cohort study. Transplant International, 2020, 33, 1650-1666.	1.6	6
11	Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney International, 2020, 97, 1260-1274.	5.2	31
12	Summary of the Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation, 2020, 104, 708-714.	1.0	73
13	KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation, 2020, 104, S11-S103.	1.0	306
14	The role of complement in kidney disease. Clinical Medicine, 2020, 20, 156-160.	1.9	26
15	Successful virtual UK Kidney Week sees record-breaking registration. Journal of Kidney Care, 2020, 5, 290-291.	0.1	0
16	Eculizumab prevents thrombotic microangiopathy in patients with atypical haemolytic uraemic syndrome in a long-term observational study. CKJ: Clinical Kidney Journal, 2019, 12, 196-205.	2.9	16
17	Changing Protein Permeability with Nephron Loss: Evidence for a Human Remnant Nephron Effect. American Journal of Nephrology, 2019, 50, 152-159.	3.1	2
18	Comparison of the Outcome of Kidney Transplant After Pulsatile or Continuous ExÂVivo Hypothermic Machine Perfusion of Kidneys Donated After Cardiac Death: Analysis of Kidney Pairs. Transplantation Proceedings, 2019, 51, 1785-1790.	0.6	4

#	Article	IF	CITATIONS
19	A Câ€ŧerminal <scp>CXCL</scp> 8 peptide based on chemokine–glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology, 2019, 157, 173-184.	4.4	19
20	The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population. American Journal of Transplantation, 2019, 19, 2262-2273.	4.7	13
21	A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Scientific Reports, 2019, 9, 3584.	3.3	36
22	Outcomes in patients with atypical hemolytic uremic syndrome treated with eculizumab in a long-term observational study. BMC Nephrology, 2019, 20, 125.	1.8	77
23	Heparan sulfate in chronic kidney diseases: Exploring the role of 3-O-sulfation. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 839-848.	2.4	9
24	Acute kidney injury electronic alerts: mixed methods Normalisation Process Theory evaluation of their implementation into secondary care in England. BMJ Open, 2019, 9, e032925.	1.9	8
25	Implementation of pre-clinical methodologies to study fibrosis and test anti-fibrotic therapy. Current Opinion in Pharmacology, 2019, 49, 95-101.	3.5	5
26	Regulation of Endothelial-to-Mesenchymal Transition by MicroRNAs in Chronic Allograft Dysfunction. Transplantation, 2019, 103, e64-e73.	1.0	15
27	lschaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatric Nephrology, 2019, 34, 951-963.	1.7	23
28	Haemolytic uremic syndrome: diagnosis and management. F1000Research, 2019, 8, 1690.	1.6	23
29	The methyltransferase SET9 regulates TGF B-1 activation of renal fibroblasts via interaction with SMAD3. Journal of Cell Science, 2018, 131, .	2.0	18
30	Long- and short-term outcomes in renal allografts with deceased donors: A large recipient and donor genome-wide association study. American Journal of Transplantation, 2018, 18, 1370-1379.	4.7	47
31	Modifying Renal Gene Expression by Anti-Sense Oligonucleotide Delivery during Normothermic Machine Perfusion. Transplantation, 2018, 102, S728.	1.0	2
32	The NF-κB1 is a key regulator of acute but not chronic renal injury. Cell Death and Disease, 2017, 8, e2883-e2883.	6.3	12
33	CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Scientific Reports, 2017, 7, 44384.	3.3	28
34	Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland. Kidney International, 2017, 92, 1261-1271.	5.2	49
35	Outcomes of patients with atypical haemolytic uraemic syndrome with native and transplanted kidneys treated with eculizumab: a pooled <i>post hoc</i> analysis. Transplant International, 2017, 30, 1275-1283.	1.6	30
36	Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. International Journal of Molecular Sciences, 2017, 18, 1692.	4.1	34

#	Article	IF	CITATIONS
37	Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genetics, 2017, 13, e1006620.	3.5	52
38	MP178ISCHEMIA REPERFUSION INJURY INDUCES A PRO-FIBROTIC PHENOTYPE IN HUMAN PROXIMAL TUBULAR EPITHELIAL CELLS. Nephrology Dialysis Transplantation, 2016, 31, i400-i401.	0.7	0
39	Epigenetic regulators, including SETD7, as new targets for the treatment of chronic kidney disease. Lancet, The, 2016, 387, S66.	13.7	0
40	Lysosomal protease cathepsin D; a new driver of apoptosis during acute kidney injury. Scientific Reports, 2016, 6, 27112.	3.3	24
41	Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease. Scientific Reports, 2016, 6, 20101.	3.3	58
42	Computerized clinical decision support for the early recognition and management of acute kidney injury: a qualitative evaluation of end-user experience. CKJ: Clinical Kidney Journal, 2016, 9, 57-62.	2.9	20
43	Systematic assessment of the influence of complement gene polymorphisms on kidney transplant outcome. Immunobiology, 2016, 221, 528-534.	1.9	10
44	Patient stratification and therapy in atypical haemolytic uraemic syndrome (aHUS). Immunobiology, 2016, 221, 715-718.	1.9	6
45	Mechanisms of Renal Graft Chronic Injury and Progression to Interstitial Fibrosis. Current Transplantation Reports, 2015, 2, 259-268.	2.0	2
46	Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney International, 2015, 87, 1061-1073.	5.2	342
47	An extended mini-complement factor H molecule ameliorates experimental C3 glomerulopathy. Kidney International, 2015, 88, 1314-1322.	5.2	58
48	Behaviour of transplanted tumours and role of matching in rejection. Transplant Immunology, 2015, 32, 121-125.	1.2	1
49	Ubiquitin C-terminal hydrolase 1: A novel functional marker for liver myofibroblasts and a therapeutic target in chronic liver disease. Journal of Hepatology, 2015, 63, 1421-1428.	3.7	41
50	Eculizumab Prevents Thrombotic Microangiopathy: Long-Term Follow-up Study of Patients with Atypical Hemolytic Uremic Syndrome. Blood, 2015, 126, 2252-2252.	1.4	2
51	Prognosis and management of chronic kidney disease (CKD) at the end of life. Postgraduate Medical Journal, 2014, 90, 98-105.	1.8	21
52	Orthostatic intolerance is common in chronic disease — A clinical cohort study. International Journal of Cardiology, 2014, 174, 861-863.	1.7	11
53	Biomarkers of acute injury: predicting the long-term outcome after transplantation. Kidney International, 2013, 84, 1072-1074.	5.2	8
54	Anticoagulation and kidney injury: rare observation or common problem?. Journal of Nephrology, 2013, 26, 603-605.	2.0	6

#	Article	IF	CITATIONS
55	Complement polymorphisms: Geographical distribution and relevance to disease. Immunobiology, 2012, 217, 265-271.	1.9	19
56	Common genetic variants in complement genes other than CFH, CD46 and the CFHRs are not associated with aHUS. Molecular Immunology, 2012, 49, 640-648.	2.2	37
57	Eculizumab (ECU) in Atypical Hemolytic Uremic Syndrome (aHUS) Patients with Progressing Thrombotic Microangiopathy (TMA): 2-Year Data Blood, 2012, 120, 2084-2084.	1.4	6
58	Successful Treatment of De Novo Posttransplant Thrombotic Microangiopathy With Eculizumab. Transplantation, 2011, 92, e42-e43.	1.0	45
59	Trajectories of Illness in Stage 5 Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1580-1590.	4.5	101
60	Eculizumab Is An Effective Long-Term Treatment In Patients with Atypical Hemolytic Uremic Syndrome (aHUS) Resistant to Plasma Exchange/Infusion (PE/PI): Results of An Extension Study. Blood, 2011, 118, 193-193.	1.4	4
61	Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney International, 2010, 78, 351-362.	5.2	118
62	Diabetic glomerular disease: pitfalls in diagnosis. CKJ: Clinical Kidney Journal, 2009, 2, 187-188.	2.9	0
63	A Novel Role for Nephrin in the Maintenance of Glomerular Structure. Journal of the American Society of Nephrology: JASN, 2009, 20, 1661-1663.	6.1	2
64	C3a Mediates Epithelial-to-Mesenchymal Transition in Proteinuric Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 593-603.	6.1	118
65	Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells. BMC Microbiology, 2009, 9, 64.	3.3	26
66	Complement Activation and Progression of Chronic Kidney Disease. Hong Kong Journal of Nephrology, 2009, 11, 41-46.	0.0	1
67	The classical complement pathway plays a critical role in the opsonisation of uropathogenic Escherichia coli. Molecular Immunology, 2008, 45, 954-962.	2.2	28
68	Synthesis of complement protein C3 in the kidney is an important mediator of local tissue injury. FASEB Journal, 2008, 22, 1065-1072.	0.5	84
69	Should Complement Activation Be a Target for Therapy in Renal Transplantation?. Journal of the American Society of Nephrology: JASN, 2008, 19, 2250-2251.	6.1	1
70	Illness trajectories: an important concept in the management of kidney failure. Nephrology Dialysis Transplantation, 2008, 23, 3746-3748.	0.7	37
71	Dialysis or not? A comparative survival study of patients over 75 years with chronic kidney disease stage 5. Nephrology Dialysis Transplantation, 2007, 22, 1955-1962.	0.7	537
72	Mechanisms of Disease: the complement system in renal injury—new ways of looking at an old foe. Nature Clinical Practice Nephrology, 2007, 3, 277-286.	2.0	37

#	Article	IF	CITATIONS
73	Deficiency of C4 from Donor or Recipient Mouse Fails to Prevent Renal Allograft Rejection. American Journal of Pathology, 2006, 168, 1241-1248.	3.8	47
74	Influence of Donor C3 Allotype on Late Renal-Transplantation Outcome. New England Journal of Medicine, 2006, 354, 2014-2023.	27.0	176
75	Accumulation of Immune Complexes in Glomerular Disease Is Independent of Locally Synthesized C3. Journal of the American Society of Nephrology: JASN, 2006, 17, 686-696.	6.1	21
76	CD46 (Membrane Cofactor Protein) Acts as a Human Epithelial Cell Receptor for Internalization of Opsonized UropathogenicEscherichia coli. Journal of Immunology, 2006, 177, 2543-2551.	0.8	54
77	Mycobacterium simiae: A Previously Undescribed Pathogen in Peritoneal Dialysis Peritonitis. American Journal of Kidney Diseases, 2005, 45, e75-e78.	1.9	7
78	Minireview: Functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney International, 2004, 66, 1334-1344.	5.2	53
79	Epithelial secretion of C3 promotes colonization of the upper urinary tract by Escherichia coli. Nature Medicine, 2001, 7, 801-806.	30.7	83
80	Late allograft loss due to recurrence of pâ€ANCAâ€associated systemic vasculitis in a patient with relapsing polychondritis. Nephrology Dialysis Transplantation, 2001, 16, 1705-1707.	0.7	6
81	Successful medical treatment of acute bilateral emphysematous pyelonephritis. American Journal of Kidney Diseases, 2000, 36, 1267-1270.	1.9	47
82	Compliments to the book on complement. Trends in Molecular Medicine, 1999, 5, 243.	2.6	0
83	Chronic Interstitial Damage in Proteinuria. Kidney and Blood Pressure Research, 1999, 22, 47-52.	2.0	18
84	Apical Proteins Stimulate Complement Synthesis by Cultured Human Proximal Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 1999, 10, 69-76.	6.1	108
85	TNF-α regulation of C3 gene expression and protein biosynthesis in rat glomerular endothelial cells. Kidney International, 1997, 51, 703-710.	5.2	65
86	IgA-associated renal diseases. Current Opinion in Nephrology and Hypertension, 1996, 5, 134-140.	2.0	1