Gert Van der Auwera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187717/publications.pdf

Version: 2024-02-01

55 papers

3,700 citations

25 h-index

236925

54 g-index

58 all docs 58 docs citations

58 times ranked 4532 citing authors

#	Article	IF	CITATIONS
1	Transcriptional Shift and Metabolic Adaptations during Leishmania Quiescence Using Stationary Phase and Drug Pressure as Models. Microorganisms, 2022, 10, 97.	3.6	7
2	Treatment outcome of imported cutaneous leishmaniasis among travelers and migrants infected with Leishmania major and Leishmania tropica: a retrospective study in European centers 2013 to 2019. International Journal of Infectious Diseases, 2022, 122, 375-381.	3.3	1
3	Clinical diversity and treatment results in Tegumentary Leishmaniasis: A European clinical report in 459 patients. PLoS Neglected Tropical Diseases, 2021, 15, e0009863.	3.0	12
4	Epidemiology, clinical pattern and impact of species-specific molecular diagnosis on management of leishmaniasis in Belgium, 2010–2018: A retrospective study. Travel Medicine and Infectious Disease, 2020, 38, 101885.	3.0	13
5	Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Scientific Reports, 2020, 10, 15043.	3.3	20
6	Next-Generation Molecular Surveillance of TriTryp Diseases. Trends in Parasitology, 2020, 36, 356-367.	3.3	10
7	Ecology and seasonality of sandflies and potential reservoirs of cutaneous leishmaniasis in Ochollo, a hotspot in southern Ethiopia. PLoS Neglected Tropical Diseases, 2019, 13, e0007667.	3.0	21
8	ISC1, a new Leishmania donovani population emerging in the Indian sub-continent: Vector competence of Phlebotomus argentipes. Infection, Genetics and Evolution, 2019, 76, 104073.	2.3	6
9	Longitudinal evaluation of asymptomatic Leishmania infection in HIV-infected individuals in North-West Ethiopia: A pilot study. PLoS Neglected Tropical Diseases, 2019, 13, e0007765.	3.0	19
10	Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Neglected Tropical Diseases, 2019, 13, e0007900.	3.0	48
11	Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. Infection, Genetics and Evolution, 2018, 62, 170-178.	2.3	32
12	Epidemiology of Leishmaniasis in the Time of Drug Resistance (the Miltefosine Era)., 2018,, 85-107.		3
13	Tegumentary leishmaniasis and coinfections other than HIV. PLoS Neglected Tropical Diseases, 2018, 12, e0006125.	3.0	33
14	Detection and identification of Leishmania spp.: application of two hsp70-based PCR-RFLP protocols to clinical samples from the New World. Parasitology Research, 2017, 116, 1843-1848.	1.6	26
15	Macromolecular biosynthetic parameters and metabolic profile in different life stages of Leishmania braziliensis: Amastigotes as a functionally less active stage. PLoS ONE, 2017, 12, e0180532.	2.5	35
16	Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 2017, 11, e0006052.	3.0	571
17	Single locus genotyping to track Leishmania donovani in the Indian subcontinent: Application in Nepal. PLoS Neglected Tropical Diseases, 2017, 11, e0005420.	3.0	19
18	Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids. Genome Biology and Evolution, 2016, 8, 1980-1995.	2.5	20

#	Article	IF	CITATIONS
19	Phylogenetic analysis of the Trypanosoma genus based on the heat-shock protein 70 gene. Infection, Genetics and Evolution, 2016, 43, 165-172.	2.3	12
20	Apolipoprotein L1 Variant Associated with Increased Susceptibility to Trypanosome Infection. MBio, 2016, 7, e02198-15.	4.1	18
21	Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiology Reviews, 2016, 40, 664-685.	8.6	24
22	Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by <i>Leishmania braziliensis </i> Diseases, 2016, 213, 112-121.	4.0	114
23	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	6.0	147
24	Quantification of Leishmania (Viannia) Kinetoplast DNA in Ulcers of Cutaneous Leishmaniasis Reveals Inter-site and Inter-sampling Variability in Parasite Load. PLoS Neglected Tropical Diseases, 2015, 9, e0003936.	3.0	34
25	Comparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain. PLoS ONE, 2015, 10, e0140139.	2.5	21
26	Experimental Resistance to Drug Combinations in Leishmania donovani: Metabolic and Phenotypic Adaptations. Antimicrobial Agents and Chemotherapy, 2015, 59, 2242-2255.	3.2	47
27	Species Typing in Dermal Leishmaniasis. Clinical Microbiology Reviews, 2015, 28, 265-294.	13.6	121
28	Antimony-Resistant <i>Leishmania donovani</i> Exploits miR-466i To Deactivate Host MyD88 for Regulating IL-10/IL-12 Levels during Early Hours of Infection. Journal of Immunology, 2015, 195, 2731-2742.	0.8	50
29	Transmission of Leishmania donovani in the Hills of Eastern Nepal, an Outbreak Investigation in Okhaldhunga and Bhojpur Districts. PLoS Neglected Tropical Diseases, 2015, 9, e0003966.	3.0	46
30	Model-Based Investigations of Different Vector-Related Intervention Strategies to Eliminate Visceral Leishmaniasis on the Indian Subcontinent. PLoS Neglected Tropical Diseases, 2014, 8, e2810.	3.0	37
31	Evaluation of Four Single-Locus Markers for Leishmania Species Discrimination by Sequencing. Journal of Clinical Microbiology, 2014, 52, 1098-1104.	3.9	61
32	Mosaic aneuploidy in Leishmania: the perspective of whole genome sequencing. Trends in Parasitology, 2014, 30, 554-555.	3.3	18
33	Differentiation between <i><scp>T</scp>rypanosoma cruzi</i> and <i><scp>T</scp>rypanosoma rangeli</i> using heatâ€shock protein 70 polymorphisms. Tropical Medicine and International Health, 2014, 19, 195-206.	2.3	4
34	Direct Leishmania species typing in Old World clinical samples: evaluation of 3 sensitive methods based on the heat-shock protein 70 gene. Diagnostic Microbiology and Infectious Disease, 2014, 80, 35-39.	1.8	20
35	Hindll and Sdul digests of heat-shock protein 70 PCR for Leishmania typing. Diagnostic Microbiology and Infectious Disease, 2013, 77, 245-247.	1.8	20
36	LC-MS METABOLOMICS FROM STUDY DESIGN TO DATA-ANALYSIS – USING A VERSATILE PATHOGEN AS A TEST CASE. Computational and Structural Biotechnology Journal, 2013, 4, e201301002.	4.1	39

#	Article	IF	CITATIONS
37	Identification ofLeishmania tropicafrom micro-foci of cutaneous leishmaniasis in the Kenyan Rift Valley. Pathogens and Global Health, 2012, 106, 159-165.	2.3	12
38	Accurate and rapid species typing from cutaneous and mucocutaneous leishmaniasis lesions of the New World. Diagnostic Microbiology and Infectious Disease, 2012, 74, 142-150.	1.8	40
39	Leishmania AFLP: Paving the way towards improved molecular assays and markers of diversity. Infection, Genetics and Evolution, 2011, 11, 960-967.	2.3	23
40	Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infection, Genetics and Evolution, 2010, 10, 238-245.	2.3	157
41	Detection of Leptomonas sp. parasites in clinical isolates of Kala-azar patients from India. Infection, Genetics and Evolution, 2010, 10, 1145-1150.	2.3	53
42	Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using Bccl for hsp70 PCR-RFLP. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104, 364-367.	1.8	27
43	Remarks on identification of amplified fragment length polymorphisms linked to SAG resistance in Leishmania. Acta Tropica, 2010, 113, 92-93.	2.0	2
44	Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infection, Genetics and Evolution, 2009, 9, 24-31.	2.3	81
45	Identification of Old World Leishmania spp. by specific polymerase chain reaction amplification of cysteine proteinase B genes and rapid dipstick detection. Diagnostic Microbiology and Infectious Disease, 2009, 63, 173-181.	1.8	24
46	Diagnostic accuracy of a new <i>Leishmania</i> PCR for clinical visceral leishmaniasis in Nepal and its role in diagnosis of disease. Tropical Medicine and International Health, 2008, 13, 1378-1383.	2.3	76
47	Cutaneous leishmaniasis. Lancet Infectious Diseases, The, 2007, 7, 581-596.	9.1	1,130
48	American tegumentary leishmaniasis: direct species identification of Leishmania in non-invasive clinical samples. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 368-371.	1.8	45
49	Epidemiological dynamics of antimonial resistance in Leishmania donovani: Genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infection, Genetics and Evolution, 2007, 7, 206-212.	2.3	49
50	Culture-Independent Species Typing of Neotropical Leishmania for Clinical Validation of a PCR-Based Assay Targeting Heat Shock Protein 70 Genes. Journal of Clinical Microbiology, 2004, 42, 2294-2297.	3.9	174
51	Reanalysis of Full-Length HIV Type 1 Group M Subtype K and Sub-Subtype F2 with an MS-DOS Bootscanning Program. AIDS Research and Human Retroviruses, 2001, 17, 185-189.	1.1	6
52	HIV-1 subtype H near-full length genome reference strains and analysis of subtype-H-containing inter-subtype recombinants. Aids, 2000, 14, 1533-1543.	2.2	13
53	HIV-1 genetic variability in Cameroon. Aids, 2000, 14, 1862-1864.	2.2	21
54	Intrapatient Variability of HIV Type 1 Group O ANT70 during a 10-Year Follow-up. AIDS Research and Human Retroviruses, 1999, 15, 1325-1332.	1.1	8

#	Article	lF	CITATIONS
55	Structure of the Large Subunit rDNA from a Diatom, and Comparison Between Small and Large Subunit Ribosomal RNA for Studying Stramenopile Evolution. Journal of Eukaryotic Microbiology, 1998, 45, 521-527.	1.7	20