List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187188/publications.pdf Version: 2024-02-01

FRIC C FERRÃO

#	Article	IF	CITATIONS
1	Havre 2012 pink pumice is evidence of a short-lived, deep-sea, magnetite nanolite-driven explosive eruption. Communications Earth & Environment, 2022, 3, .	6.8	15
2	Importance of Hematite Selfâ€Reversal in Alâ€Rich Soils Magnetostratigraphy: Revisiting the Damei Red Soil Sequence in the Bose Basin, Southern China. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
3	Inverse Magnetic Fabrics Caused by Magnetofossils in the Northwestern South China Sea Since End of the Last Glacial. Geophysical Research Letters, 2022, 49, .	4.0	2
4	Magnetic sources in the Earth's mantle. Nature Reviews Earth & Environment, 2021, 2, 59-69.	29.7	13
5	Focal Mechanisms of Intraslab Earthquakes: Insights From Pseudotachylytes in Mantle Units. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021479.	3.4	3
6	Ferromagnetic resonance of superparamagnetic nanoparticles: The effect of dipole–dipole interactions. Journal of Applied Physics, 2021, 130, .	2.5	7
7	Kinematics of frictional melts at the base of the world's largest terrestrial landslide: Markagunt gravity slide, southwest Utah, United States. Journal of Structural Geology, 2021, 153, 104448.	2.3	2
8	Faulting Processes Unveiled by Magnetic Properties of Fault Rocks. Reviews of Geophysics, 2020, 58, e2019RG000690.	23.0	16
9	Post-Depositional Fluid Flow in Jurassic Sandstones of the Uncompahgre Uplift: Insights From Magnetic Fabrics. Frontiers in Earth Science, 2020, 8, .	1.8	4
10	The potential contribution to long wavelength magnetic anomalies from the lithospheric mantle. Physics of the Earth and Planetary Interiors, 2019, 292, 21-28.	1.9	11
11	The effect of oxidation on the mineralogy and magnetic properties of olivine. American Mineralogist, 2019, 104, 694-702.	1.9	32
12	Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 2018, 11, 782-789.	12.9	183
13	Shergottite Northwest Africa 6963: A Pyroxeneâ€Cumulate Martian Gabbro. Journal of Geophysical Research E: Planets, 2018, 123, 1823-1841.	3.6	20
14	Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 2017, 59, 1439-1450.	2.1	145
15	Earthquakes in the Mantle? Insights From Rock Magnetism of Pseudotachylytes. Journal of Geophysical Research: Solid Earth, 2017, 122, 8769-8785.	3.4	10
16	Brushlines in fault pseudotachylytes: A new criterion for coseismic slip direction. Geology, 2016, 44, 395-398.	4.4	10
17	Deciphering viscous flow of frictional melts with the mini-AMS method. Journal of Structural Geology, 2016, 90, 15-26.	2.3	15
18	Physical properties and seismic structure of <scp>lzu</scp> â€ <scp>B</scp> oninâ€ <scp>M</scp> ariana foreâ€arc crust: Results from IODP <scp>E</scp> xpedition 352 and comparison with oceanic crust. Geochemistry, Geophysics, Geosystems, 2016, 17, 4973-4991.	2.5	15

#	Article	IF	CITATIONS
19	Orogenâ€parallel deformation of the Himalayan midcrust: Insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurnaâ€Dhaulagiri Himalaya, central Nepal. Tectonics, 2016, 35, 2515-2537.	2.8	28
20	The Significance of Magnetic Fabric in Layered Mafic-Ultramafic Intrusions. Springer Geology, 2015, , 295-329.	0.3	11
21	Focal mechanism of prehistoric earthquakes deduced from pseudotachylyte fabric. Geology, 2015, 43, 531-534.	4.4	16
22	Magmatic accretion and thermal convection at the sheeted dike complex–gabbro boundary in superfast spreading crust, ODP Hole 1256D. Tectonophysics, 2015, 660, 107-116.	2.2	2
23	Gabbroic Shergottite Northwest Africa 6963: An intrusive sample of Mars. American Mineralogist, 2014, 99, 601-606.	1.9	29
24	Deformation and magnetic fabrics in ductile shear zones: A review. Tectonophysics, 2014, 629, 179-188.	2.2	58
25	Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics, 2014, 624-625, 3-14.	2.2	72
26	Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province. Geophysical Research Letters, 2014, 41, 1514-1522.	4.0	7
27	Coseismic magnetization of fault pseudotachylytes: 1. Thermal demagnetization experiments. Journal of Geophysical Research: Solid Earth, 2014, 119, 6113-6135.	3.4	11
28	Remanent magnetization in fresh xenoliths derived from combined demagnetization experiments: Magnetic mineralogy, origin and implications for mantle sources of magnetic anomalies. Tectonophysics, 2014, 624-625, 24-31.	2.2	8
29	Deformation coupling between the Archean Pukaskwa intrusive complex and the Hemlo shear zone, Superior Province, Canada. Tectonophysics, 2013, 608, 1226-1237.	2.2	2
30	Internal structure of basalt flows: insights from magnetic and crystallographic fabrics of the La Palisse volcanics, French Massif Central. Geophysical Journal International, 2013, 193, 585-602.	2.4	21
31	The magnetism of mantle xenoliths and potential implications for subâ€Moho magnetic sources. Geophysical Research Letters, 2013, 40, 105-110.	4.0	56
32	The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources. Geophysical Research Letters, 2013, , n/a-n/a.	4.0	1
33	Granite magma migration and emplacement along thrusts. International Journal of Earth Sciences, 2012, 101, 1673-1688.	1.8	51
34	Vertical zonation of the Barcroft granodiorite, White Mountains, California: Implications for magmatic processes. American Mineralogist, 2012, 97, 1049-1059.	1.9	9
35	Magnetic properties of fault pseudotachylytes in granites. Journal of Geophysical Research, 2012, 117, .	3.3	23
36	Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece. Tectonics, 2011, 30, .	2.8	104

#	Article	IF	CITATIONS
37	Fabric development in the mantle section of a paleotransform fault and its effect on ophiolite obduction, New Caledonia. Lithosphere, 2011, 3, 221-244.	1.4	26
38	Viscoplastic flow in migmatites deduced from fabric anisotropy: An example from the Naxos dome, Greece. Journal of Geophysical Research, 2010, 115, .	3.3	39
39	Comparison of Fry strain ellipse and AMS ellipsoid trends to tectonic fabric trends in very low-strain sandstone of the Appalachian fold–thrust belt. Journal of Structural Geology, 2009, 31, 1028-1038.	2.3	38
40	The magnetic stratification of layered mafic intrusions: Natural examples and numerical models. Lithos, 2009, 111, 83-94.	1.4	18
41	The magnetic properties of natural and synthetic (Fe , Mg1â^')2 SiO4 olivines. Earth and Planetary Science Letters, 2009, 284, 516-526.	4.4	41
42	Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). Chemical Geology, 2009, 266, 171-186.	3.3	90
43	Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009, 73, 729-749.	3.9	117
44	Rock magnetic stratigraphy of a mafic layered sill: A key to the Karoo volcanics plumbing system. Journal of Volcanology and Geothermal Research, 2008, 172, 75-92.	2.1	19
45	How are saucerâ€shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research, 2008, 113, .	3.3	58
46	Characteristics of the amphibolites from Nigde metamorphics (Central Turkey), deduced from whole rock and mineral chemistry. Geochemical Journal, 2007, 41, 241-257.	1.0	6
47	The magnetic susceptibility of granitic rocks as a proxy for geochemical composition: Example from the Saruhan granitoids, NE Turkey. Tectonophysics, 2007, 441, 85-95.	2.2	49
48	The Sonju Lake layered intrusion, northeast Minnesota: Internal structure and emplacement history inferred from magnetic fabrics. Precambrian Research, 2007, 157, 269-288.	2.7	23
49	Separation of paramagnetic and ferrimagnetic anisotropies: A review. Journal of Geophysical Research, 2007, 112, .	3.3	71
50	Granulite facies metamorphism and charnockite plutonism: examples from the Neoproterozoic Belt of northern Nigeria. Proceedings of the Geologists Association, 2007, 118, 47-54.	1.1	19
51	Slow and fast deformation in the Dora Maira Massif, Italian Alps: Pseudotachylytes and inferences on exhumation history. Journal of Structural Geology, 2007, 29, 1114-1130.	2.3	23
52	Reply to comments by G. Kletetschka on "The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents― Tectonophysics, 2006, 419, 101-102.	2.2	0
53	Flow of partially molten crust and origin of detachments during collapse of the Cordilleran Orogen. Geological Society Special Publication, 2005, 245, 39-64.	1.3	56
54	Magnetic fabric and microstructure of a mylonite: example from the Bitterroot shear zone, western Montana. Geological Society Special Publication, 2005, 245, 143-163.	1.3	12

#	Article	IF	CITATIONS
55	The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 2005, 402, 125-139.	2.2	46
56	The magnetic anisotropy of mantle peridotites: Example from the Twin Sisters dunite, Washington. Tectonophysics, 2005, 398, 141-166.	2.2	25
57	Paramagnetic and ferromagnetic anisotropy of magnetic susceptibility in migmatites: measurements in high and low fields and kinematic implications. Geophysical Journal International, 2004, 157, 1119-1129.	2.4	59
58	Magnetic susceptibility anisotropy: A new petrofabric tool in migmatites. Journal of Geophysical Research, 2003, 108, .	3.3	40
59	Magma flow inferred from AMS fabrics in a layered mafic sill, Insizwa, South Africa. Tectonophysics, 2002, 354, 1-23.	2.2	66
60	Theoretical models of intermediate and inverse AMS fabrics. Geophysical Research Letters, 2002, 29, 31-1.	4.0	104
61	Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian Research, 2002, 114, 199-219.	2.7	155
62	Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith. Lithos, 2001, 59, 47-67.	1.4	68
63	Repeated tabular injection of high-level alkaline granites in the eastern Bushveld, South Africa. Journal of the Geological Society, 2000, 157, 1077-1088.	2.1	25
64	Preserved magnetic fabrics vs. annealed microstructures in the syntectonic recrystallised George granite, South Africa. Journal of Structural Geology, 2000, 22, 1199-1219.	2.3	30
65	Magnetic susceptibility and AMS of the Bushveld alkaline granites, South Africa. Tectonophysics, 1999, 307, 113-133.	2.2	40
66	Pan-African, post-collisional, ferro-potassic granite and quartz–monzonite plutons of Eastern Nigeria. Lithos, 1998, 45, 255-279.	1.4	120
67	Oblique magmatic structures of two epizonal granite plutons, Hoggar, Algeria: late-orogenic emplacement in a transcurrent orogen. Tectonophysics, 1997, 279, 351-374.	2.2	38
68	The Pan-African reactivation of Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society, 1996, 153, 719-728.	2.1	91
69	Internal fabric and strike-slip emplacement of the Pan-African granite of Solli Hills, northern Nigeria. Tectonics, 1995, 14, 1205-1219.	2.8	48