
Vincenzo Corbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death and Differentiation, 2022, 29, 420-438.	11.2	14
2	Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer. , 2022, 10, e003549.		22
3	Immune-Guided Therapy of COVID-19. Cancer Immunology Research, 2022, 10, 384-402.	3.4	20
4	Cancer bio-immunotherapy XVIII annual NIBIT-(Italian network for tumor biotherapy) meeting, October 15–16, 2020. Cancer Immunology, Immunotherapy, 2022, , 1.	4.2	0
5	The Cross-Talk between Myeloid and Mesenchymal Stem Cells of Human Bone Marrow Represents a Biomarker of Aging That Regulates Immune Response and Bone Reabsorption. Cells, 2022, 11, 1.	4.1	15
6	CD66bâ^'CD64dimCD115â^' cells in the human bone marrow represent neutrophil-committed progenitors. Nature Immunology, 2022, 23, 679-691.	14.5	28
7	Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. Journal of Immunology Research, 2022, 2022, 1-21.	2.2	6
8	Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines, 2022, 10, 1332.	3.2	7
9	Monocytes in the Tumor Microenvironment. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 93-122.	22.4	126
10	Covid-19 Interstitial Pneumonia: Histological and Immunohistochemical Features on Cryobiopsies. Respiration, 2021, 100, 488-498.	2.6	75
11	Wnt–β-catenin as an epigenetic switcher in colonic Treg cells. Nature Immunology, 2021, 22, 400-401.	14.5	3
12	How to Reprogram Myeloma-Associated Macrophages: Target IKZF1. Cancer Immunology Research, 2021, 9, 254-254.	3.4	2
13	Deciphering the state of immune silence in fatal COVID-19 patients. Nature Communications, 2021, 12, 1428.	12.8	107
14	The pathogenic role of epithelial and endothelial cells in early-phase COVID-19 pneumonia: victims and partners in crime. Modern Pathology, 2021, 34, 1444-1455.	5.5	41
15	Galectin-1 Supports a Dangerous Liaison between Monocytes and Multiple Myeloma. Cancer Immunology Research, 2021, 9, 488-488.	3.4	0
16	Artificial neural networks for multi-omics classifications of hepato-pancreato-biliary cancers: towards the clinical application of genetic data. European Journal of Cancer, 2021, 148, 348-358.	2.8	6
17	Molecular alterations in basal cell carcinoma subtypes. Scientific Reports, 2021, 11, 13206.	3.3	19
18	The immune modulatory effects of umbilical cord-derived mesenchymal stromal cells in severe COVID-19 pneumonia. Stem Cell Research and Therapy, 2021, 12, 316.	5.5	12

#	Article	IF	CITATIONS
19	Arginase 1–Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti–PD-1 Checkpoint Blockade. Cancer Immunology Research, 2021, 9, 1316-1326.	3.4	32
20	GM-CSF Nitration Is a New Driver of Myeloid Suppressor Cell Activity in Tumors. Frontiers in Immunology, 2021, 12, 718098.	4.8	10
21	Phenotypical Characterization and Isolation of Tumor-Derived Mouse Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, 2021, 2236, 29-42.	0.9	0
22	Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Frontiers in Cell and Developmental Biology, 2021, 9, 795251.	3.7	14
23	Myeloid Diagnostic and Prognostic Markers of Immune Suppression in the Blood of Glioma Patients. Frontiers in Immunology, 2021, 12, 809826.	4.8	8
24	Platelets Promote Thromboinflammation in SARS-CoV-2 Pneumonia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2975-2989.	2.4	144
25	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.7	29
26	Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discovery, 2020, 10, 1758-1773.	9.4	44
27	Oncolytic virotherapy meets the human organoid technology for pancreatic cancers. EBioMedicine, 2020, 57, 102828.	6.1	0
28	Intraductal Pancreatic Mucinous Neoplasms: A Tumor-Biology Based Approach for Risk Stratification. International Journal of Molecular Sciences, 2020, 21, 6386.	4.1	15
29	Organoid-Transplant Model Systems to Study the Effects of Obesity on the Pancreatic Carcinogenesis in vivo. Frontiers in Cell and Developmental Biology, 2020, 8, 308.	3.7	8
30	Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Science Translational Medicine, 2020, 12, .	12.4	21
31	Increased Arginase1 expression in tumor microenvironment promotes mammary carcinogenesis via multiple mechanisms. Carcinogenesis, 2020, 41, 1695-1702.	2.8	1
32	Generation of Pancreatic Organoid-Derived Isografts. STAR Protocols, 2020, 1, 100047.	1.2	2
33	Macrophages Instruct Aberrant Glycosylation in Colon Cancer by Chemokine and Cytokine Signals. Cancer Immunology Research, 2020, 8, 160-160.	3.4	5
34	Targeting of immunosuppressive myeloid cells from glioblastoma patients by modulation of size and surface charge of lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 31.	9.1	30
35	Detection and functional evaluation of arginase-1 isolated from human PMNs and murine MDSC. Methods in Enzymology, 2020, 632, 193-213.	1.0	7
36	Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Research, 2020, 80, 2874-2888.	0.9	81

#	Article	IF	CITATIONS
37	Modeling Cell Communication in Cancer With Organoids: Making the Complex Simple. Frontiers in Cell and Developmental Biology, 2020, 8, 166.	3.7	71
38	Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism. Pharmacological Research, 2020, 158, 104863.	7.1	27
39	Baricitinib restrains the immune dysregulation in patients with severe COVID-19. Journal of Clinical Investigation, 2020, 130, 6409-6416.	8.2	213
40	PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers, 2019, 11, 1141.	3.7	71
41	Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease. Scientific Reports, 2019, 9, 12286.	3.3	27
42	Melanoma Extracellular Vesicles Generate Immunosuppressive Myeloid Cells by Upregulating PD-L1 via TLR4 Signaling. Cancer Research, 2019, 79, 4715-4728.	0.9	97
43	Close to the Bone: Tissue-Specific Checkpoint Immunotherapy Evasion. Cell, 2019, 179, 1010-1012.	28.9	0
44	The Endless Saga of Monocyte Diversity. Frontiers in Immunology, 2019, 10, 1786.	4.8	67
45	Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Research, 2019, 29, 846-861.	12.0	160
46	Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD. Blood, 2019, 134, 1670-1682.	1.4	49
47	Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. , 2019, 7, 255.		123
48	Characterization of Myeloid-derived Suppressor Cells in a Patient With Lung Adenocarcinoma Undergoing Durvalumab Treatment: A Case Report. Clinical Lung Cancer, 2019, 20, e514-e516.	2.6	8
49	Deciphering Macrophage and Monocyte Code to Stratify Human Breast Cancer Patients. Cancer Cell, 2019, 35, 538-539.	16.8	17
50	Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells. Cancer Research, 2019, 79, 1938-1951.	0.9	58
51	GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Science Immunology, 2019, 4, .	11.9	85
52	Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. Journal of Controlled Release, 2019, 295, 60-73.	9.9	36
53	Peripheral blood immunophenotyping in a large cohort of patients with Shwachman–Diamond syndrome. Pediatric Blood and Cancer, 2019, 66, e27597.	1.5	5
54	Methods to Measure MDSC Immune Suppressive Activity <i>In Vitro</i> and <i>In Vivo</i> . Current Protocols in Immunology, 2019, 124, e61.	3.6	35

#	Article	IF	CITATIONS
55	The mesenchymal and myeloid regulation of immunity: Power is nothing without control. Seminars in Immunology, 2018, 35, 1-2.	5.6	1
56	Activation of p53 in Immature Myeloid Precursor Cells Controls Differentiation into Ly6c+CD103+ Monocytic Antigen-Presenting Cells in Tumors. Immunity, 2018, 48, 91-106.e6.	14.3	95
57	Induction of immunosuppressive functions and NF- $\hat{I}^{2}B$ by FLIP in monocytes. Nature Communications, 2018, 9, 5193.	12.8	45
58	ERG alterations and mTOR pathway activation in primary prostate carcinomas developing castration-resistance. Pathology Research and Practice, 2018, 214, 1675-1680.	2.3	1
59	Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis, 2018, 39, 971-980.	2.8	48
60	Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. Journal of Experimental and Clinical Cancer Research, 2018, 37, 140.	8.6	27
61	PD-1, PD-L1, and CD163 in pancreatic undifferentiated carcinoma with osteoclast-like giant cells: expression patterns and clinical implications. Human Pathology, 2018, 81, 157-165.	2.0	44
62	The expanding constellation of immune checkpoints: a DNAMic control by CD155. Journal of Clinical Investigation, 2018, 128, 2199-2201.	8.2	8
63	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	3.3	44
64	Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b + cells that expedite hematopoietic recovery. Haematologica, 2017, 102, 818-825.	3.5	16
65	A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity, 2017, 46, 233-244.	14.3	241
66	4PD Functionalized Dendrimers: A Flexible Tool for In Vivo Gene Silencing of Tumor-Educated Myeloid Cells. Journal of Immunology, 2017, 198, 4166-4177.	0.8	23
67	The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Current Opinion in Pharmacology, 2017, 35, 30-39.	3.5	114
68	Fhit down-regulation is an early event in pancreatic carcinogenesis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 470, 647-653.	2.8	5
69	From Oncogene Interference to Neutrophil Immune Modulation. Immunity, 2017, 47, 613-615.	14.3	1
70	Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. , 2017, 5, 44.		181
71	Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.	1.3	174
72	Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy. Oncotarget, 2017, 8, 86987-87001.	1.8	18

#	Article	IF	CITATIONS
73	Tumor-Induced Myeloid-Derived Suppressor Cells. Microbiology Spectrum, 2016, 4, .	3.0	28
74	Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Research, 2016, 76, 2540-2551.	0.9	25
75	Interfering with CCL5/CCR5 at the Tumor-Stroma Interface. Cancer Cell, 2016, 29, 437-439.	16.8	17
76	Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials, 2016, 96, 47-62.	11.4	118
77	T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells. Cancer Cell, 2016, 30, 377-390.	16.8	141
78	Adipocytes and Neutrophils Give a Helping Hand to Pancreatic Cancers. Cancer Discovery, 2016, 6, 821-823.	9.4	7
79	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	12.8	2,076
80	Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunology, Immunotherapy, 2016, 65, 161-169.	4.2	175
81	Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Seminars in Immunology, 2016, 28, 54-63.	5.6	47
82	Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.	27.8	2,700
83	MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 35-48.	7.4	68
84	Immune suppressive mechanisms in the tumor microenvironment. Current Opinion in Immunology, 2016, 39, 1-6.	5.5	407
85	Magnitude of PD-1, PD-L1 and T Lymphocyte Expression on Tissue from Castration-Resistant Prostate Adenocarcinoma: An Exploratory Analysis. Targeted Oncology, 2016, 11, 345-351.	3.6	56
86	Prostate-specific membrane antigen (PSMA) assembles a macromolecular complex regulating growth and survival of prostate cancer cells " <i>in vitro</i> ―and correlating with progression " <i>in vivo</i> ― Oncotarget, 2016, 7, 74189-74202.	1.8	21
87	Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. Oncotarget, 2016, 7, 1168-1184.	1.8	103
88	Abstract 1449:In vivotargeted silencing of CCR1 and CCR5 repolarizes pro-tumoral myeloid cells in retinoblastoma positive neutrophils with a strong anti-tumor activity. , 2016, , .		0
89	Abstract IA13: Immune suppressive and immune stimulating monocytes in cancer. , 2016, , .		0
90	Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma. Immunology, 2015, 146, 33-49.	4.4	5

#	Article	IF	CITATIONS
91	GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood, 2015, 126, 1621-1628.	1.4	104
92	Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death-Ligand-1 (PD-L1): Sensitivity Analysis of Trials in Melanoma, Lung and Genitourinary Cancers. PLoS ONE, 2015, 10, e0130142.	2.5	390
93	DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.	14.3	144
94	Complexity and challenges in defining myeloid-derived suppressor cells. , 2015, 88, 77-91.		119
95	Understanding Local Macrophage Phenotypes In Disease: Modulating macrophage function to treat cancer. Nature Medicine, 2015, 21, 117-119.	30.7	131
96	Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Current Opinion in Immunology, 2015, 33, 120-125.	5.5	50
97	Tumor-Promoting Effects of Myeloid-Derived Suppressor Cells Are Potentiated by Hypoxia-Induced Expression of miR-210. Cancer Research, 2015, 75, 3771-3787.	0.9	112
98	Monocyte-Derived Suppressor Cells in Transplantation. Current Transplantation Reports, 2015, 2, 176-183.	2.0	27
99	CD4+ T Cell Help Selectively Enhances High-Avidity Tumor Antigen-Specific CD8+ T Cells. Journal of Immunology, 2015, 195, 3482-3489.	0.8	33
100	Transgenic mice overexpressing arginase 1 in monocytic cell lineage are affected by lympho–myeloproliferative disorders and disseminated intravascular coagulation. Carcinogenesis, 2015, 36, 1354-1362.	2.8	3
101	Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 2015, 125, 3365-3376.	8.2	443
102	Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget, 2015, 6, 10161-10174.	1.8	30
103	Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models. Biomatter, 2014, 4, e955386.	2.6	42
104	Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs). Genomics Data, 2014, 2, 389-392.	1.3	12
105	ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death and Disease, 2014, 5, e1135-e1135.	6.3	102
106	Tumor cells hijack macrophages via lactic acid. Immunology and Cell Biology, 2014, 92, 647-649.	2.3	32
107	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	14.3	121

108 Complexity and challenges in defining myeloid-derived suppressor cells. , 2014, , n/a-n/a.

#	Article	IF	CITATIONS
109	The Emerging Immunological Role of Post-Translational Modifications by Reactive Nitrogen Species in Cancer Microenvironment. Frontiers in Immunology, 2014, 5, 69.	4.8	58
110	PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 2014, 211, 781-790.	8.5	1,601
111	Small Noncoding RNAs in Cells Transformed by Human T-Cell Leukemia Virus Type 1: a Role for a tRNA Fragment as a Primer for Reverse Transcriptase. Journal of Virology, 2014, 88, 3612-3622.	3.4	116
112	Tumors STING Adaptive Antitumor Immunity. Immunity, 2014, 41, 679-681.	14.3	17
113	Myeloidâ€derived suppressor cell heterogeneity in human cancers. Annals of the New York Academy of Sciences, 2014, 1319, 47-65.	3.8	349
114	Human fibrocytic myeloidâ€derived suppressor cells express IDO and promote tolerance via Tregâ€cell expansion. European Journal of Immunology, 2014, 44, 3307-3319.	2.9	104
115	Differential Control of Mincle-Dependent Cord Factor Recognition and Macrophage Responses by the Transcription Factors C/EBPβ and HIF1α. Journal of Immunology, 2014, 193, 3664-3675.	0.8	58
116	Cancer Immune Modulation and Immunosuppressive Cells: Current and Future Therapeutic Approaches. Advances in Delivery Science and Technology, 2014, , 187-214.	0.4	1
117	Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance. , 2014, , 99-150.		2
118	Arginase, Nitric Oxide Synthase, and Novel Inhibitors of L-arginine Metabolism in Immune Modulation. , 2013, , 597-634.		6
119	The Spleen in Local and Systemic Regulation of Immunity. Immunity, 2013, 39, 806-818.	14.3	707
120	miR-142-3p Prevents Macrophage Differentiation during Cancer-Induced Myelopoiesis. Immunity, 2013, 38, 1236-1249.	14.3	127
121	Anatomically Restricted Synergistic Antiviral Activities of Innate and Adaptive Immune Cells in the Skin. Cell Host and Microbe, 2013, 13, 155-168.	11.0	76
122	High-Avidity T Cells Are Preferentially Tolerized in the Tumor Microenvironment. Cancer Research, 2013, 73, 595-604.	0.9	36
123	Differently immunogenic cancers in mice induce immature myeloid cells that suppress CTL in vitro but not in vivo following transfer. Blood, 2013, 121, 1740-1748.	1.4	25
124	Smoothing T cell roads to the tumor. Oncolmmunology, 2012, 1, 390-392.	4.6	6
125	Myeloid-derived Suppressor Cells in Cancer Patients. Journal of Immunotherapy, 2012, 35, 107-115.	2.4	195
126	Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 2012, 12, 253-268.	22.7	3,002

#	Article	IF	CITATIONS
127	The pros and cons of chemokines in tumor immunology. Trends in Immunology, 2012, 33, 496-504.	6.8	101
128	Immune Tolerance to Tumor Antigens Occurs in a Specialized Environment of the Spleen. Cell Reports, 2012, 2, 628-639.	6.4	196
129	Regeneration-associated WNT Signaling Is Activated in Long-term Reconstituting AC133bright Acute Myeloid Leukemia Cells. Neoplasia, 2012, 14, 1236-IN45.	5.3	26
130	Nitric oxide affects immune cells bioenergetics. Immunobiology, 2012, 217, 808-815.	1.9	4
131	l-glutamine is a key parameter in the immunosuppression phenomenon. Biochemical and Biophysical Research Communications, 2012, 425, 724-729.	2.1	41
132	Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models. BMC Cell Biology, 2012, 13, 18.	3.0	61
133	Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nature Medicine, 2012, 18, 1254-1261.	30.7	721
134	Myeloid-Derived Suppressor Cells in Cancer. , 2012, , 217-229.		0
135	Abstract 5365: Prolonged survival of patients with advanced renal cancer responding to multi-peptide vaccine IMA901 after single-dose cyclophosphamide. , 2012, , .		0
136	Antigen specificity of immune suppression by myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2011, 90, 31-36.	3.3	77
137	Tumour-Induced Immune Suppression by Myeloid Cells. , 2011, , 49-62.		0
138	In Vivo Induction of Myeloid Suppressor Cells and CD4 ⁺ Foxp3 ⁺ T Regulatory Cells Prolongs Skin Allograft Survival in Mice. Cell Transplantation, 2011, 20, 941-954.	2.5	66
139	Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood, 2011, 117, 7053-7062.	1.4	199
140	A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood, 2011, 118, 2254-2265.	1.4	328
141	Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer and Metastasis Reviews, 2011, 30, 27-43.	5.9	36
142	Modulation of human Tâ€cell functions by reactive nitrogen species. European Journal of Immunology, 2011, 41, 1843-1849.	2.9	54
143	Transcription factors in myeloid-derived suppressor cell recruitment and function. Current Opinion in Immunology, 2011, 23, 279-285.	5.5	58
144	Myeloid-derived suppressor cells exhibit two bioenergetic steady-states in vitro. Journal of Biotechnology, 2011, 152, 43-48.	3.8	5

#	Article	IF	CITATIONS
145	Exocytosis of azurophil and arginase 1-containing granules by activated polymorphonuclear neutrophils is required to inhibit T lymphocyte proliferation. Journal of Leukocyte Biology, 2011, 89, 721-727.	3.3	106
146	Inhibition of Tumor-Induced Myeloid-Derived Suppressor Cell Function by a Nanoparticulated Adjuvant. Journal of Immunology, 2011, 186, 264-274.	0.8	53
147	Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. Journal of Experimental Medicine, 2011, 208, 1949-1962.	8.5	547
148	Tolerogenic pDCs: spotlight on Foxo3. Journal of Clinical Investigation, 2011, 121, 1247-1250.	8.2	7
149	Abstract 302: Multiple distinct populations of myeloid derived suppressor cells in IMA901 treated renal cell cancer patients correlate with survival and with T-cell dysfunctions. , 2011, , .		0
150	Abstract 473: CD4+ T cell help differentially influences anti-tumor immunity as a function of T cell avidity. , 2011, , .		0
151	Hierarchy of immunosuppressive strength among myeloidâ€derived suppressor cell subsets is determined by GM SF. European Journal of Immunology, 2010, 40, 22-35.	2.9	479
152	Autoimmune B-cell lymphopenia after successful adoptive therapy with telomerase-specific T lymphocytes. Blood, 2010, 115, 1374-1384.	1.4	33
153	Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 2010, 22, 238-244.	5.5	579
154	Tumor-Induced Tolerance and Immune Suppression Depend on the C/EBPÎ ² Transcription Factor. Immunity, 2010, 32, 790-802.	14.3	782
155	Control of immune response by amino acid metabolism. Immunological Reviews, 2010, 236, 243-264.	6.0	273
156	The Transcriptional Response in Human Umbilical Vein Endothelial Cells Exposed to Insulin: A Dynamic Gene Expression Approach. PLoS ONE, 2010, 5, e14390.	2.5	8
157	MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocrine-Related Cancer, 2010, 17, 771-783.	3.1	135
158	Role of microRNAs in HTLV-1 infection and transformation. Molecular Aspects of Medicine, 2010, 31, 367-382.	6.4	37
159	IFN-γ-mediated upmodulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine, 2010, 28, 3548-3557.	3.8	98
160	Measurement of Myeloid Cell Immune Suppressive Activity. Current Protocols in Immunology, 2010, 91, Unit 14.17.	3.6	17
161	Interferon- $\hat{1}$ ± counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer. Carcinogenesis, 2009, 30, 851-860.	2.8	33
162	<i>In vivo</i> Administration of Artificial Antigen-Presenting Cells Activates Low-Avidity T Cells for Treatment of Cancer. Cancer Research, 2009, 69, 9376-9384.	0.9	61

#	Article	IF	CITATIONS
163	Differential expression of constitutive and inducible proteasome subunits in human monocyteâ€derived DC differentiated in the presence of IFNâ€ <i>α</i> or ILâ€4. European Journal of Immunology, 2009, 39, 56-66.	2.9	24
164	Myeloidâ€derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. European Journal of Immunology, 2009, 39, 2670-2672.	2.9	126
165	Therapeutic targeting of myeloid-derived suppressor cells. Current Opinion in Pharmacology, 2009, 9, 470-481.	3.5	188
166	IL4Rα+ Myeloid-Derived Suppressor Cell Expansion in Cancer Patients. Journal of Immunology, 2009, 182, 6562-6568.	0.8	287
167	Suppressive Influences in the Immune Response to Cancer. Journal of Immunotherapy, 2009, 32, 1-11.	2.4	69
168	Tumorâ€induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 2008, 222, 162-179.	6.0	569
169	Role of arginine metabolism in immunity and immunopathology. Immunobiology, 2008, 212, 795-812.	1.9	133
170	Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Letters, 2008, 267, 216-225.	7.2	103
171	Preventive Vaccination with Telomerase Controls Tumor Growth in Genetically Engineered and Carcinogen-Induced Mouse Models of Cancer. Cancer Research, 2008, 68, 9865-9874.	0.9	42
172	Th17 and cancer: friends or foes?. Blood, 2008, 112, 214-214.	1.4	33
173	Myeloid-Derived Suppressor Cells in Cancer. , 2008, , 157-195.		3
174	The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 425-425.	0.9	649
175	Arginase, Nitric Oxide Synthase, and Novel Inhibitors of L-Arginine Metabolism in Immune Modulation. , 2007, , 369-399.		0
176	Metabolic mechanisms of cancer-induced inhibition of immune responses. Seminars in Cancer Biology, 2007, 17, 309-316.	9.6	38
177	Fine-Needle Aspiration Molecular Analysis for the Diagnosis of Papillary Thyroid Carcinoma Through BRAFV600E Mutation and RET/PTC Rearrangement. Thyroid, 2007, 17, 1109-1115.	4.5	94
178	Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 2007, 117, 1155-1166.	8.2	1,031
179	Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Medicinal Research Reviews, 2007, 27, 317-352.	10.5	402
180	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	1.4	183

#	Article	IF	CITATIONS
181	Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 2006, 16, 53-65.	9.6	690
182	Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Journal of Experimental Medicine, 2006, 203, 2691-2702.	8.5	683
183	Leukocyte Infiltration in Cancer Creates an Unfavorable Environment for Antitumor Immune Responses: A Novel Target for Therapeutic Intervention. Immunological Investigations, 2006, 35, 327-357.	2.0	36
184	Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 2006, 116, 2777-2790.	8.2	723
185	Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 2005, 5, 641-654.	22.7	1,516
186	Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. Journal of Experimental Medicine, 2005, 201, 1257-1268.	8.5	352
187	Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4185-4190.	7.1	271
188	Cancer Immunotherapy Based on Killing of Salmonella-Infected Tumor Cells. Cancer Research, 2005, 65, 3920-3927.	0.9	157
189	Cancer rejection by the immune system: Forcing the check-points of tumor immune escape. Drug Discovery Today Disease Mechanisms, 2005, 2, 191-197.	0.8	2
190	High-Dose Granulocyte-Macrophage Colony-Stimulating Factor-Producing Vaccines Impair the Immune Response through the Recruitment of Myeloid Suppressor Cells. Cancer Research, 2004, 64, 6337-6343.	0.9	477
191	Therapeutic Effectiveness of Recombinant Cancer Vaccines Is Associated with a Prevalent T-Cell Receptor α Usage by Melanoma-specific CD8+ T Lymphocytes. Cancer Research, 2004, 64, 8068-8076.	0.9	22
192	Correspondence 1: Cancer vaccines: pessimism in check. Nature Medicine, 2004, 10, 1278-1279.	30.7	49
193	Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 2004, 53, 64-72.	4.2	321
194	CpG-Oligodeoxynucleotides activate tyrosinase-related protein 2?specific T lymphocytes but do not lead to a protective tumor-specific memory response. Cancer Immunology, Immunotherapy, 2004, 53, 697-704.	4.2	6
195	Part I: Vaccines for solid tumours. Lancet Oncology, The, 2004, 5, 681-689.	10.7	202
196	Methotrexate for immunosuppression in life-supporting pig-to-cynomolgus monkey renal xenotransplantation. Xenotransplantation, 2003, 10, 587-595.	2.8	14
197	L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends in Immunology, 2003, 24, 301-305.	6.8	508
198	IL-4-Induced Arginase 1 Suppresses Alloreactive T Cells in Tumor-Bearing Mice. Journal of Immunology, 2003. 170. 270-278.	0.8	445

#	Article	IF	CITATIONS
199	Effective Genetic Vaccination with a Widely Shared Endogenous Retroviral Tumor Antigen Requires CD40 Stimulation during Tumor Rejection Phase. Journal of Immunology, 2003, 171, 6396-6405.	0.8	39
200	Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. Journal of Immunology, 2002, 168, 689-695.	0.8	585
201	Genetic Vaccination for the Active Immunotherapy of Cancer. Current Gene Therapy, 2001, 1, 53-100.	2.0	22
202	Tumor-Induced Immune Dysfunctions Caused by Myeloid Suppressor Cells. Journal of Immunotherapy, 2001, 24, 431-446.	2.4	234
203	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	1.4	474
204	Immortalized Myeloid Suppressor Cells Trigger Apoptosis in Antigen-Activated T Lymphocytes. Journal of Immunology, 2000, 165, 6723-6730.	0.8	146
205	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	1.4	54
206	Interleukin-10 Enhances the Therapeutic Effectiveness of a Recombinant Poxvirus-Based Vaccine in an Experimental Murine Tumor Model. Journal of Immunotherapy, 1999, 22, 489-496.	2.4	40
207	Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3183-3188.	7.1	146
208	Protein Tyrosine Kinases and Phosphatases Control Apoptosis Induced by Extracellular Adenosine 5′-Triphosphate. Biochemical and Biophysical Research Communications, 1996, 218, 344-351.	2.1	35
209	Molecular genetics of cancer. Gene therapy and other novel therapeutic approaches. Cancer, 1995, 76, 1878-1881.	4.1	1
210	Role of anti-LFA-1 and anti-ICAM-1 combined mab treatment in the rejection of tumors induced by moloney murine sarcoma virus (M-MSV). International Journal of Cancer, 1995, 61, 355-362.	5.1	12
211	Anti-Tumor Activity of Cytotoxic T Lymphocytes Elicited with Recombinant and Synthetic Forms of a Model Tumor-Associated Antigen. Journal of Immunotherapy, 1995, 18, 139-146.	2.4	28
212	Role of Extracellular ATP in Cell-Mediated Cytotoxicity: A Study with ATP-Sensitive and ATP-Resistant Macrophages. Cellular Immunology, 1994, 156, 458-467.	3.0	26
213	Inhibition of Protein Tyrosine Phosphorylation Prevents T-Cell-Mediated Cytotoxicity. Cellular Immunology, 1994, 159, 294-305.	3.0	10
214	Synergistic Effect of Extracellular Adenosine 5′-Triphosphate and Tumor Necrosis Factor on DNA Degradation. Cellular Immunology, 1993, 152, 110-119.	3.0	11
215	Antitumour efficacy of lymphokine-activated killer cells loaded with ricin against experimentally induced lung metastases. Cancer Immunology, Immunotherapy, 1992, 35, 27-32.	4.2	6
216	Extracellular ATP as a possible mediator of cell-mediated cytotoxicity. Trends in Immunology, 1990, 11, 274-277.	7.5	116

#	Article	IF	CITATIONS
217	Resistance of lymphokine-activated T lymphocytes to cell-mediated cytotoxicity. Cellular Immunology, 1989, 122, 450-460.	3.0	7
218	Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856.		1
219	Ursula Grohmann, PhD: In Memoriam (1961–2022). Cancer Immunology Research, 0, , OF1-OF1.	3.4	0