Roman A Novikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimerization of donor–acceptor cyclopropanes. Mendeleev Communications, 2015, 25, 1-10.	1.6	143
2	A New Type of Donor–Acceptor Cyclopropane Reactivity: The Generation of Formal 1,2―and 1,4â€Đipoles. Angewandte Chemie - International Edition, 2014, 53, 3187-3191.	13.8	110
3	Organic and hybrid systems: from science to practice. Mendeleev Communications, 2017, 27, 425-438.	1.6	86
4	Methods for the synthesis of donor-acceptor cyclopropanes. Russian Chemical Reviews, 2018, 87, 201-250.	6.5	82
5	Six-Membered Cyclic Nitronates as 1,3-Dipoles in Formal [3 + 3]-Cycloaddition with Donor–Acceptor Cyclopropanes. Synthesis of New Type of Bicyclic Nitrosoacetals. Organic Letters, 2013, 15, 350-353.	4.6	71
6	The expanding repertoire of G4 DNA structures. Biochimie, 2017, 135, 54-62.	2.6	71
7	GaCl ₃ â€Mediated Reactions of Donor–Acceptor Cyclopropanes with Aromatic Aldehydes. Angewandte Chemie - International Edition, 2016, 55, 12233-12237.	13.8	69
8	Donor–Acceptor Cyclopropanes as 1,2-Dipoles in GaCl ₃ -Mediated [4 + 2]-Annulation with Alkenes: Easy Access to the Tetralin Skeleton. Journal of Organic Chemistry, 2015, 80, 8225-8235.	3.2	61
9	Complexes of Donor–Acceptor Cyclopropanes with Tin, Titanium, and Gallium Chlorides — Mechanism Studies. Organometallics, 2012, 31, 8627-8638.	2.3	58
10	[4 + 2] Annulation of Donor–Acceptor Cyclopropanes with Acetylenes Using 1,2-Zwitterionic Reactivity. Journal of Organic Chemistry, 2017, 82, 2724-2738.	3.2	56
11	Aerobic Co or Cu/NHPI-catalyzed oxidation of hydride siloxanes: synthesis of siloxanols. Green Chemistry, 2018, 20, 1467-1471.	9.0	56
12	New dimerization and cascade oligomerization reactions of dimethyl 2-phenylcyclopropan-1,1-dicarboxylate catalyzed by Lewis acids. Tetrahedron Letters, 2011, 52, 4996-4999.	1.4	50
13	Iminoxyl Radicalâ€Based Strategy for Intermolecular Cī£¿O Bond Formation: Crossâ€Dehydrogenative Coupling of 1,3â€Dicarbonyl Compounds with Oximes. Advanced Synthesis and Catalysis, 2014, 356, 2266-2280.	4.3	46
14	Radical Nitration-Debromination of α-Bromo-α-fluoroalkenes as a Stereoselective Route to Aromatic α-Fluoronitroalkenes—Functionalized Fluorinated Building Blocks for Organic Synthesis. Journal of Organic Chemistry, 2017, 82, 5274-5284.	3.2	45
15	Synthesis of Triazole-Linked Oligonucleotides with High Affinity to DNA Complements and an Analysis of Their Compatibility with Biosystems. Journal of Organic Chemistry, 2013, 78, 5964-5969.	3.2	44
16	Stereoelectronic Control in the Ozoneâ€Free Synthesis of Ozonides. Angewandte Chemie - International Edition, 2017, 56, 4955-4959.	13.8	44
17	Three omponent Gallium(III)â€Promoted Addition of Halide Anions and Acetylenes to Donor–Acceptor Cyclopropanes. Angewandte Chemie - International Edition, 2018, 57, 10293-10298.	13.8	42
18	Ionic Ga-Complexes of Alkylidene- and Arylmethylidenemalonates and Their Reactions with Acetylenes: An In-Depth Look into the Mechanism of the Occurring Gallium Chemistry. Journal of the American Chemical Society, 2018, 140, 14381-14390.	13.7	40

#	Article	IF	CITATIONS
19	General synthetic approach towards annelated 3a,6-epoxyisoindoles by tandem acylation/IMDAF reaction of furylazaheterocycles. Scope and limitations. Tetrahedron, 2014, 70, 1659-1690.	1.9	38
20	Lewis acid catalyzed reactions of donor–acceptor cyclopropanes with 1- and 2-pyrazolines: formation of substituted 2-pyrazolines and 1,2-diazabicyclo[3.3.0]octanes. Tetrahedron, 2010, 66, 9151-9158.	1.9	37
21	Stereoselective Double Lewis Acid/Organo-Catalyzed Dimerization of Donor–Acceptor Cyclopropanes into Substituted 2-Oxabicyclo[3.3.0]octanes. Journal of Organic Chemistry, 2012, 77, 5993-6006.	3.2	37
22	Au/Pt/TiO2 catalysts prepared by redox method for the chemoselective 1,2-propanediol oxidation to lactic acid and an NMR spectroscopy approach for analyzing the product mixture. Applied Catalysis A: General, 2015, 491, 170-183.	4.3	35
23	Aerobic Co-/ <i>N</i> -Hydroxysuccinimide-Catalyzed Oxidation of <i>p-</i> Tolylsiloxanes to <i>p-</i> Carboxyphenylsiloxanes: Synthesis of Functionalized Siloxanes as Promising Building Blocks for Siloxane-Based Materials. Journal of the American Chemical Society, 2019, 141, 2143-2151.	13.7	32
24	Novel Formal [3+3] Cycloaddition of Silyl Nitronates with Activated CycloÂpropanes and Its Application in the Synthesis of Pyrroline-N-oxides. Synlett, 2014, 25, 2275-2280.	1.8	31
25	Approach for the Preparation of Various Classes of Peroxides Based on the Reaction of Triketones with H ₂ O ₂ : First Examples of Ozonide Rearrangements. Chemistry - A European Journal, 2014, 20, 10160-10169.	3.3	31
26	Formal [3+3]-cycloaddition of 3-methyl-5,6-dihydro-4H-1,2-oxazine-N-oxides with cyclopropane dicarboxylates under hyperbaric conditions. Tetrahedron Letters, 2015, 56, 2102-2105.	1.4	31
27	Styrylmalonates as an Alternative to Donor–Acceptor Cyclopropanes in the Reactions with Aldehydes: A Route to 5,6-Dihydropyran-2-ones. Organic Letters, 2017, 19, 3731-3734.	4.6	31
28	Diels–Alder reactions between hexafluoro-2-butyne and bis-furyl dienes: kinetic <i>versus</i> thermodynamic control. Chemical Communications, 2018, 54, 2850-2853.	4.1	31
29	Enantioselective Olefin Epoxidation using Axially Chiral Biaryl Azepinium Salts as Catalysts. Rapid <i>inâ€situ</i> Screening and Origin of the Stereocontrol. Advanced Synthesis and Catalysis, 2008, 350, 1113-1124.	4.3	29
30	Nature Chooses Rings: Synthesis of Silicon-Containing Macrocyclic Peroxides. Organometallics, 2014, 33, 2230-2246.	2.3	29
31	Synthesis and Regioselective Nâ€2 Functionalization of 4â€Fluoroâ€5â€arylâ€1,2,3â€N <i>H</i> â€ŧriazoles. Euro Journal of Organic Chemistry, 2017, 2017, 6851-6860.	pean 2.4	29
32	GaCl ₃ -Mediated "Inverted―Formal [3 + 2]-Cycloaddition of Donor–Acceptor Cyclopropanes to Allylic Systems. Journal of Organic Chemistry, 2018, 83, 8193-8207.	3.2	29
33	Synthesis, structural, spectroscopic and docking studies of new 5C-substituted 2,4-diamino-5H-chromeno[2,3-b]pyridine-3-carbonitriles. Journal of Molecular Structure, 2017, 1146, 766-772.	3.6	28
34	Classical Example of Total Kinetic and Thermodynamic Control: The Diels–Alder Reaction between DMAD and Bis-furyl Dienes. Journal of Organic Chemistry, 2018, 83, 4840-4850.	3.2	27
35	PASE Pseudo-Four-Component Synthesis and Docking Studies of New 5-C-Substituted 2,4-Diamino-5 <i>H</i> -Chromeno[2,3- <i>b</i>]pyridine-3-Carbonitriles. ChemistrySelect, 2017, 2, 4593-4597.	1.5	26
36	Divergent Reactivity of In Situ Generated Metal Azides: Reaction with <i>N</i> , <i>N</i> ê€Bis(oxy)enamines as a Case Study. Chemistry - A European Journal, 2017, 23, 4570-4578.	3.3	24

#	Article	IF	CITATIONS
37	GaCl ₃ â€Mediated Reactions of Donor–Acceptor Cyclopropanes with Aromatic Aldehydes. Angewandte Chemie, 2016, 128, 12421-12425.	2.0	23
38	Highly Enantioselective Biphasic Iminiumâ€Catalyzed Epoxidation of Alkenes. On the Importance of the Counterion and of N(<i>sp</i> ²)C(<i>sp</i> ³) Rotamers. Advanced Synthesis and Catalysis, 2009, 351, 596-606.	4.3	22
39	Enantioselective iminium-catalyzed epoxidation of hindered trisubstituted allylic alcohols. Tetrahedron: Asymmetry, 2010, 21, 1611-1618.	1.8	22
40	Fluoronitroalkenes in tandem [4 + 1]/[3 + 2]-cycloaddition: one-pot three-component assembly of fluorinated bicyclic nitroso acetals. Organic Chemistry Frontiers, 2018, 5, 2588-2594.	4.5	22
41	Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids, 2016, 115, 114-122.	1.8	21
42	Cascade Cleavage of Three-Membered Rings in the Reaction of D–A Cyclopropanes with 4,5-Diazaspiro[2.4]hept-4-enes: A Route to Highly Functionalized Pyrazolines. Journal of Organic Chemistry, 2018, 83, 7836-7851.	3.2	21
43	Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Research, 2016, 44, gkw947.	14.5	19
44	Tandem Pd-catalyzed C–C coupling/recyclization of 2-(2-bromoaryl)cyclopropane-1,1-dicarboxylates with primary nitro alkanes. Tetrahedron Letters, 2016, 57, 11-14.	1.4	19
45	Comparison of [17(20) E]-21-Norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids, 2018, 129, 24-34.	1.8	19
46	Exploiting Coupling of Boronic Acids with Triols for a pH-Dependent "Click-Declick―Chemistry. Journal of Organic Chemistry, 2018, 83, 9756-9773.	3.2	19
47	Synthesis and Structures of Cyclopropanedicarboxylate Gallium Complexes. Organometallics, 2015, 34, 4238-4250.	2.3	18
48	Three-Component GaHal ₃ -Promoted Reactions of Substituted Methylidenemalonates and Donor–Acceptor Cyclopropanes with Propargyl Halides: Cascade Diastereoselective Construction of Five-Membered Lactones. Journal of Organic Chemistry, 2019, 84, 6174-6182.	3.2	18
49	Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. Journal of the American Chemical Society, 2021, 143, 6634-6648.	13.7	18
50	Sixâ€Membered Cyclic Nitroso Acetals: Synthesis and Studies of the Nitrogen Inversion Process of <i>N</i> â€Silyloxyâ€3,6â€dihydroâ€2 <i>H</i> â€1,2â€oxazines. European Journal of Organic Chemistry, 2016, 2 5569-5578.	01264	17
51	â€~On-solvent' new domino reaction of salicylaldehyde, malononitrile and 4-hydroxy-6-methylpyridin-2(1) Tj E Mendeleev Communications, 2017, 27, 559-561.	TQq1 1 0. 1.6	.784314 rg ^B 17
52	Fourâ€Membered Cycle Formation Challenge: GaCl ₃ â€Promoted Formal [2+2] ycloaddition of Donor–Acceptor Cyclopropanes to Bicyclobutylidene. European Journal of Organic Chemistry, 2019, 2019, 4207-4214.	2.4	17
53	New approach to the synthesis of polymethylsilsesquioxane dendrimers. Polymer, 2019, 174, 159-169.	3.8	17
54	Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. Journal of the American Chemical Society, 2022, 144, 7264-7282.	13.7	17

#	Article	IF	CITATIONS
55	Dimerization of Dimethyl 2â€(Naphthalenâ€1â€yl)cyclopropaneâ€1,1â€dicarboxylate in the Presence of GaCl ₃ to [3+2], [3+3], [3+4], and Spiroannulation Products. Helvetica Chimica Acta, 2013, 96, 2068-2080.	1.6	16
56	Six Peroxide Groups in One Molecule – Synthesis of Nineâ€Membered Bicyclic Silyl Peroxides. European Journal of Organic Chemistry, 2014, 2014, 6877-6883.	2.4	16
57	GaCl3-mediated acyclic dimerization of donor–acceptor cyclopropanes using 1,2-dipole reactivity. Mendeleev Communications, 2015, 25, 341-343.	1.6	16
58	Transformation of 2-allyl-1,3-diketones to bicyclic compounds containing 1,2-dioxolane and tetrahydrofuran rings using the I 2 /H 2 O 2 system. Tetrahedron Letters, 2016, 57, 949-952.	1.4	16
59	Synthesis of <scp>d</scp> -(+)-camphor-based <i>N</i> -acylhydrazones and their antiviral activity. MedChemComm, 2018, 9, 2072-2082.	3.4	16
60	"Diels-Alder reaction―in the ionic version: GaCl3-promoted formation of substituted cyclohexenes from donor–acceptor cyclopropanes and dienes. Tetrahedron Letters, 2020, 61, 151990.	1.4	16
61	GaCl ₃ -Mediated Cascade [2 + 4]-Cycloaddition/[4 + 2]-Annulation of Donor–Acceptor Cyclopropanes with Conjugated Dienes: Strategy for the Construction of Benzobicyclo[3.3.1]nonane Skeleton. Journal of Organic Chemistry, 2021, 86, 8089-8100.	3.2	16
62	Stereoelectronic Control in the Ozoneâ€Free Synthesis of Ozonides. Angewandte Chemie, 2017, 129, 5037-5041.	2.0	15
63	Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron, 2018, 74, 7442-7449.	1.9	14
64	Influence of the N→Ru Coordinate Bond Length on the Activity of New Types of Hoveyda–Grubbs Olefin Metathesis Catalysts Containing a Six-Membered Chelate Ring Possessing a Ruthenium–Nitrogen Bond. Organometallics, 2020, 39, 4599-4607.	2.3	14
65	Enantioselective Olefin Epoxidation Using Novel Doubly Bridged Biphenyl Azepines as Catalysts. Chimia, 2007, 61, 236-239.	0.6	13
66	Synthesis of 21-nitrogen substituted pregna-5,17(20)-dienes from pregnenolone. Steroids, 2012, 77, 77-84.	1.8	13
67	Unexpected formation of substituted naphthalenes and phenanthrenes in a GaCl3 mediated dimerization–fragmentation reaction of 2-arylcyclopropane-1,1-dicarboxylates. Mendeleev Communications, 2014, 24, 346-348.	1.6	13
68	1,1 '-Bicyclopropyl-2,2-dicarboxylate and Cyclopropylmethylidenemalonate as Homovinylogs and Vinylogs of Donor-Acceptor Cyclopropanes. ChemistrySelect, 2016, 1, 6374-6381.	1.5	13
69	GaCl3-Mediated Isomerization of Donor–Acceptor Cyclopropanes into (2-Arylalkylidene)malonates. Synlett, 2016, 27, 1367-1370.	1.8	13
70	Synthesis of Chromenoimidazoles, Annulated with an Azaindole Moiety, through a Base-Promoted Domino Reaction of CyanoÂmethyl Quaternary Salts. Synthesis, 2017, 49, 2753-2760.	2.3	13
71	Synthesis of 2,5-diaryl-4-halo-1,2,3-triazoles and comparative study of their fluorescent properties. Tetrahedron, 2018, 74, 3897-3903.	1.9	13
72	New steroidal oxazolines, benzoxazoles and benzimidazoles related to abiraterone and galeterone. Steroids, 2020, 153, 108534.	1.8	13

#	Article	IF	CITATIONS
73	Synthesis of the Cationic Gallium Phthalocyanines and Their Catalytic Application in Gallium(III)-Activated Processes for Donor–Acceptor Substrates. Organometallics, 2020, 39, 2580-2593.	2.3	13
74	Unusual C-alkylation of pyrazolines with 2-(het)arylcyclopropane-1,1-dicarboxylates in the presence of GaCl3. Mendeleev Communications, 2012, 22, 87-89.	1.6	12
75	Reactions of mono- and bicyclic enol ethers with the I2–hydroperoxide system. RSC Advances, 2014, 4, 7579-7587.	3.6	12
76	Reduction of Organosilicon Peroxides: Ring Contraction and Cyclodimerization. Organometallics, 2016, 35, 1667-1673.	2.3	12
77	Polyfunctional carboranyl substituted octasilsesquioxane: Synthesis and characterization. Journal of Organometallic Chemistry, 2016, 822, 1-4.	1.8	12
78	Highly diastereoselective formation of 3,7-dioxabicyclo[3.3.0]octan-2-ones in reaction of 2-arylcyclopropanedicarboxylates with aromatic aldehydes using 1,2-zwitterionic reactivity type. Tetrahedron Letters, 2017, 58, 3712-3716.	1.4	12
79	Structural and Functional Aspects of C-Quadruplex Aptamers Which Bind a Broad Range of Influenza A Viruses. Biomolecules, 2020, 10, 119.	4.0	12
80	4-Chloro-l-kynurenine as fluorescent amino acid in natural peptides. Amino Acids, 2018, 50, 1697-1705.	2.7	11
81	A role for 3′-O-β-D-ribofuranosyladenosine in altering plant immunity. Phytochemistry, 2019, 157, 128-134.	2.9	11
82	Reactions of Styrylmalonates with Aromatic Aldehydes: Detailed Synthetic and Mechanistic Studies. Journal of Organic Chemistry, 2021, 86, 4457-4471.	3.2	11
83	Unexpected formation of 4-arylcyclopentane-1,1,3,3-tetracarboxylates in GaCl3-catalyzed reaction of 2-arylcyclopropane-1,1-dicarboxylates with tetrasubstituted 1-pyrazolines. Mendeleev Communications, 2012, 22, 181-183.	1.6	10
84	A Novel Entry to 3,4,5-Trisubstituted 2-Pyrrolidones from Isoxazoline-N-oxides. Synlett, 2018, 29, 1871-1874.	1.8	10
85	Dumbbellâ€Shaped, Graft and Bottlebrush Polymers with Allâ€Siloxane Nature: Synthetic Methodology, Thermal, and Rheological Behavior. Macromolecular Rapid Communications, 2021, 42, 2000645.	3.9	10
86	Silica-Based Aerogels with Tunable Properties: The Highly Efficient BF ₃ -Catalyzed Preparation and Look inside Their Structure. Macromolecules, 2021, 54, 1961-1975.	4.8	10
87	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) ₄] ²⁺ (BF <su Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics 2021 40 3876-3885</su 	b>4 ₃ /sub 2.3	> ^{–<}
88	[17(20)E]- and [17(20)Z]-pregna-5,17(20)-dien-21-oylamides. Facile synthesis and primary evaluation for cancer cells proliferation. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5495-5498.	2.2	9
89	Structure-activity studies of irumamycin type macrolides from Streptomyces sp. INA-Ac-5812. Tetrahedron Letters, 2019, 60, 1448-1451.	1.4	9
90	"Four-component―assembly of polyaromatic 4H-cyclopenta[b]thiophene structures based on GaCl3-promoted reaction of styrylmalonates with 5-phenylthiophene-2-carbaldehyde. Tetrahedron Letters, 2019, 60, 746-750.	1.4	9

#	Article	IF	CITATIONS
91	Hydrazo coupling: the efficient transition-metal-free C–H functionalization of 8-hydroxyquinoline and phenol through base catalysis. Green Chemistry, 2019, 21, 6381-6389.	9.0	9
92	Opening of the epoxide bridge in 3a,6-epoxyisoindol-1-ones by the action of BF3â‹Et2O in acetic anhydride*. Chemistry of Heterocyclic Compounds, 2012, 48, 514-524.	1.2	8
93	Synthesis and molecular modeling of (4′R)- and (4′S)- 4′-substituted 2′-{[(E)-androst-5-en-17-ylidene]-methyl}oxazolines. Steroids, 2013, 78, 521-527.	1.8	8
94	Lipophilic derivatives of natural chlorins: Synthesis, mixed micelles with phospholipids, and uptake by cultured cells. Bioorganic and Medicinal Chemistry, 2013, 21, 5420-5427.	3.0	8
95	Copper-Catalyzed Oxidation of Hydrosilanes: A New Method for the Synthesis of Alkyl- and Siloxysilanols. Synlett, 2018, 29, 489-492.	1.8	8
96	"Cyclopropanation of Cyclopropanes― GaCl ₃ -Mediated Ionic Cyclopropanation of Donor–Acceptor Cyclopropanes with Diazo Esters as a Route to Tetrasubstituted Activated Cyclopropanes. Journal of Organic Chemistry, 2021, 86, 4567-4579.	3.2	8
97	A novel and unusual reaction of 1,2,3,4,5,6,7-hepta(methoxycarbonyl)-cyclohepta-2,4,6-trien-1-yl potassium with organic azides. Tetrahedron Letters, 2014, 55, 2381-2384.	1.4	7
98	One-pot synthesis of new acid photogenerators for Rhodamine laser dyes fluorescence activation. Dyes and Pigments, 2017, 136, 612-618.	3.7	7
99	Three omponent Gallium(III)â€Promoted Addition of Halide Anions and Acetylenes to Donor–Acceptor Cyclopropanes. Angewandte Chemie, 2018, 130, 10450-10455.	2.0	7
100	Homophtalonitrile for Multicomponent Reactions: Syntheses and Optical Properties of <i>o</i> yanophenyl―or Indolâ€3â€yl‧ubstituted Chromeno[2,3â€ <i>c</i>]isoquinolinâ€5â€Amines. ChemistryOpen, 2019, 8, 23-30.	1.9	7
101	Application of New Efficient Hoveyda–Grubbs Catalysts Comprising an N→Ru Coordinate Bond in a Six-Membered Ring for the Synthesis of Natural Product-Like Cyclopenta[b]furo[2,3-c]pyrroles. Molecules, 2020, 25, 5379.	3.8	7
102	Donor–Acceptor Bicyclopropyls as 1,6-Zwitterionic Intermediates: Synthesis and Reactions with 4-Phenyl-1,2,4-triazoline-3,5-dione and Terminal Acetylenes. Journal of Organic Chemistry, 2020, 85, 15562-15576.	3.2	7
103	Facile Synthesis of 152-Carboxamides of Methyl Pheophorbide a. Macroheterocycles, 2012, 5, 146-148.	0.5	6
104	Synthesis of furyl-, furylvinyl-, thienyl-, pyrrolinylquinazolines and isoindolo[2,1-a]quinazolines. Russian Chemical Bulletin, 2015, 64, 1345-1353.	1.5	6
105	Coupling of Styrylmalonates with Furan and Benzofuran Carbaldehydes: Synthesis and Chemistry of Substituted (4-Oxocyclopent-2-enyl)malonates. Journal of Organic Chemistry, 2021, 86, 8489-8499.	3.2	6
106	Lewis Acid atalyzed Formal (4+2)―and (2+2+2) ycloaddition Between 1â€Azadienes and Styrylmalonates as Analogues of Donorâ€Acceptor Cyclopropanes. Advanced Synthesis and Catalysis, 2021, 363, 5292-5299.	4.3	6
107	Synthesis of Substituted β-Styrylmalonates by Sequential Isomerization of 2-Arylcyclopropane-1,1-dicarboxylates and (2-Arylethylidene)malonates. Synthesis, 2021, 53, 2253-2259. 	2.3	6
108	Conjugates of Pyropheophorbide a with Androgen Receptor Ligands. Macroheterocycles, 2017, 10, 77-80.	0.5	6

#	Article	IF	CITATIONS
109	Ring-chain tautomerism in the products of the reaction between 5-substituted furfurylamines and anhydrides of α,β-unsaturated carboxylic acids. Chemistry of Heterocyclic Compounds, 2016, 52, 225-236.	1.2	5
110	Selective transformation of tricyclic peroxides with pronounced antischistosomal activity into 2-hydroxy-1,5-diketones using iron (II) salts. Tetrahedron, 2016, 72, 3421-3426.	1.9	5
111	Stereoselective Michael Halogenation Initiated Ring Closure (MHIRC) Synthesis of Spirocyclopropanes from Benzylidenemalononitriles and 3-Arylisoxazol-5(4H)-ones. Synlett, 2016, 27, 2489-2493.	1.8	5
112	Conjugates of 17-substituted testosterone and epitestosterone with pyropheophorbide a differing in the length of linkers. Steroids, 2018, 138, 82-90.	1.8	5
113	Raise the anchor! Synthesis, X-ray and NMR characterization of 1,3,5-triazinanes with an axial <i>tert</i> -butyl group. Organic and Biomolecular Chemistry, 2020, 18, 8386-8394.	2.8	5
114	Stereoregular cyclicÂp-tolyl-containing siloxanes as promising reagents for synthesizing functionalized organosiloxanes. Journal of Organometallic Chemistry, 2020, 914, 121223.	1.8	5
115	Lewis acid mediated Michael addition of non-aromatic multiple C C bonds to α,β-unsaturated dicarbonyl compounds. Tetrahedron Letters, 2021, 80, 153272.	1.4	5
116	A Threeâ€Component Synthesis of 3â€Functionally Substituted 5,6â€Dihydropyrrolo[2,1â€ <i>a</i>]isoquinolines. Chemistry and Biodiversity, 2022, 19, e2100584.	2.1	5
117	Wagner–Meerwein rearrangement in 2,6a-epoxyoxireno[e]isoindole series. Chemistry of Heterocyclic Compounds, 2016, 52, 736-742.	1.2	4
118	The effect of ligands on the change of diastereoselectivity dimerization of 2-(naphthyl-1)cyclopropanedicarboxylate in the presence of GaCl3. Arkivoc, 2017, 2016, 362-375.	0.5	4
119	4-Phenylspiro[2.2]pentane-1,1-dicarboxylate: synthesis and reactions with EtAlCl2 and 4,5-diazaspiro[2.4]hept-4-ene derivative. Mendeleev Communications, 2019, 29, 417-418.	1.6	4
120	Stereoregular cyclic <i>p</i> -tolyl-siloxanes with alkyl, O- and N-containing groups as promising reagents for the synthesis of functionalized organosiloxanes. New Journal of Chemistry, 2021, 45, 9805-9810.	2.8	4
121	Chemoselectivity of [4 + 2] cycloaddition in N-maleyl- and N-allyl-2,6-difurylpiperidin-4-ones. Chemistry of Heterocyclic Compounds, 2012, 48, 785-794.	1.2	3
122	Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2014-2018.	2.2	3
123	Reaction of benzyne with 1,2,3,4-tetrahydroisoquinolines as an access to 1 H -3-benzazepines. Mendeleev Communications, 2018, 28, 22-24.	1.6	3
124	Construction of siloxane structures with P-Tolyl substituents at the silicon atom. Journal of Organometallic Chemistry, 2020, 926, 121497.	1.8	3
125	Gallium(iii)-mediated dimerization routes for (5-phenyl-2-thienyl)cyclopropane-1,1-dicarboxylate. Mendeleev Communications, 2022, 32, 170-172.	1.6	3
126	1,3-Dipolar cycloaddition of alkenes to 3'-azido-3'-deoxythymidine as a route to 3'-deoxythymidin-3â€ derivatives. Mendeleev Communications, 2014, 24, 206-208.	۲™-yl 1.6	2

#	Article	IF	CITATIONS
127	Transformations of 4-arylpyrrolo[1,2-a][1,4]benzodiazepines in three-component reactions with activated alkynes and Đ¡Đ; NH, SH, and ОЕacids. Chemistry of Heterocyclic Compounds, 2015, 51, 639-646.	1.2	2
128	Synthesis of unsaturated silyl nitronates via the silylation of conjugated nitroalkenes. Tetrahedron Letters, 2018, 59, 3128-3131.	1.4	2
129	Trifunctional (Pyropheophorbide a – Steroid – Hexadecyl Chain) Conjugates: Synthesis, Solubilization, Interaction with Cultured Cells. Macroheterocycles, 2018, 11, 277-285.	0.5	2
130	Reactions of thieno[2,3-Ñ]pyrrolines with dehydrobenzene. Chemistry of Heterocyclic Compounds, 2018, 54, 664-668.	1.2	1
131	Convenient synthesis of furo[2,3-c][1,2]dioxoles from 1-aryl-2-allylalkane-1,3-diones. Mendeleev Communications, 2020, 30, 607-609.	1.6	1
132	Folding topology, structural polymorphism, and dimerization of intramolecular DNA G-quadruplexes with inverted polarity strands and non-natural loops. International Journal of Biological Macromolecules, 2020, 162, 1972-1981.	7.5	1
133	Short Approach to Pyrrolopyrazino-, Pyrrolodiazepino-Isoindoles and their Benzo Analogues via the IMDAF Reaction. Current Organic Synthesis, 2017, 14, .	1.3	1
134	Divergent Reactivity of In Situ Generated Metal Azides: Reaction with N ,N -Bis(oxy)enamines as a Case Study. Chemistry - A European Journal, 2017, 23, 4466-4466.	3.3	0
135	On the Reaction of Carbonyl Diphosphonic Acid with Hydroxylamine and O-alkylhydroxylamines: Unexpected Degradation of P-C-P Bridge. Molecules, 2017, 22, 1040.	3.8	0