Mark W Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186242/publications.pdf

Version: 2024-02-01

145	11,789	50	104
papers	citations	h-index	g-index
150	150	150	14912
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Confronting parachute science in conservation. Conservation Science and Practice, 2022, 4, .	2.0	13
2	Conservation lessons from taboos and trolley problems. Conservation Biology, 2021, 35, 794-803.	4.7	9
3	Improving inferences about private land conservation by accounting for incomplete reporting. Conservation Biology, 2021, 35, 1174-1185.	4.7	4
4	Generic theories of change for conservation strategies: A new series supporting evidenceâ€based conservation practice. Conservation Science and Practice, 2021, 3, e400.	2.0	5
5	Global policy for assisted colonization of species. Science, 2021, 372, 456-458.	12.6	29
6	Assisted colonization risk assessment—Response. Science, 2021, 372, 925-926.	12.6	0
7	The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degradation and Development, 2021, 32, 4033-4041.	3.9	3
8	Coâ€development of a risk assessment strategy for managed relocation. Ecological Solutions and Evidence, 2021, 2, e12092.	2.0	8
9	Fitting the solutions to the problems in managing extreme wildfire in California. Environmental Research Communications, 2021, 3, 081005.	2.3	8
10	The unaddressed threat of invasive animals in U.S. National Parks. Biological Invasions, 2020, 22, 177-188.	2.4	13
11	Traitâ€based climate vulnerability of native rodents in southwestern Mexico. Ecology and Evolution, 2020, 10, 5864-5876.	1.9	11
12	Ensuring tests of conservation interventions build on existing literature. Conservation Biology, 2020, 34, 781-783.	4.7	14
13	"Forest mismanagement―misleads. Science, 2020, 370, 417-417.	12.6	3
14	The <scp>COVID</scp> â€19 pandemic: A learnable moment for conservation. Conservation Science and Practice, 2020, 2, e255.	2.0	11
15	Bridging the knowledgeâ€implementation gap between agency and academia: A case study of a graduate research experience. Conservation Science and Practice, 2020, 2, e286.	2.0	0
16	Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 287, 107943.	4.8	61
17	Intensified burn severity in California's northern coastal mountains by drier climatic condition. Environmental Research Letters, 2020, 15, 104033.	5.2	26
18	States lack endangered species reporting. Science, 2019, 365, 229-230.	12.6	1

#	Article	IF	CITATIONS
19	Plan S and publishing: reply to LehtomÃki etÂal. 2019. Conservation Biology, 2019, 33, 1203-1204.	4.7	O
20	Fitting the US National Park Service for Change. BioScience, 2019, 69, 651-657.	4.9	3
21	Solve the biodiversity crisis with funding. Science, 2019, 365, 1256-1256.	12.6	16
22	Amplifying plant disease risk through assisted migration. Conservation Letters, 2019, 12, e12605.	5.7	24
23	A vision for documenting and sharing knowledge in conservation. Conservation Science and Practice, 2019, 1, e1.	2.0	19
24	The Decade on Ecosystem Restoration is an impetus to get it right. Conservation Science and Practice, 2019, 1, e145.	2.0	45
25	A vision for documenting and sharing knowledge in conservation. Conservation Science and Practice, 2019, 1, e1.	2.0	2
26	Open access and academic imperialism. Conservation Biology, 2019, 33, 5-6.	4.7	16
27	Assessment of the Conservation Measures Partnership's effort to improve conservation outcomes through adaptive management. Conservation Biology, 2018, 32, 926-937.	4.7	26
28	Climate change vulnerability assessment of forests in the Southwest USA. Climatic Change, 2018, 148, 387-402.	3.6	57
29	Identifying climate risk perceptions, information needs, and barriers to information exchange among public land managers. Science of the Total Environment, 2018, 616-617, 245-254.	8.0	17
30	Decision Support Frameworks and Tools for Conservation. Conservation Letters, 2018, 11, e12385.	5.7	139
31	OBSOLETE: Endangered Species Act. , 2018, , .		O
32	Climate risk on two vegetation axes—Tropical wetâ€toâ€dry and temperate aridâ€toâ€moist forests. Journal of Biogeography, 2018, 45, 2361-2374.	3.0	7
33	Commonness, rarity, and oligarchies of woody plants in the tropical dry forests of Mexico. Biotropica, 2017, 49, 493-501.	1.6	8
34	Ecological careers in natureâ€based nonâ€governmental organizations. Frontiers in Ecology and the Environment, 2017, 15, 338-339.	4.0	2
35	Foundations of translational ecology. Frontiers in Ecology and the Environment, 2017, 15, 541-550.	4.0	212
36	Trusting land to volunteers: How and why land trusts involve volunteers in ecological monitoring. Biological Conservation, 2017, 208, 48-54.	4.1	19

#	Article	IF	CITATIONS
37	Navigating translational ecology: creating opportunities for scientist participation. Frontiers in Ecology and the Environment, 2017, 15, 578-586.	4.0	51
38	The impact of climate change uncertainty on California's vegetation and adaptation management. Ecosphere, 2017, 8, e02021.	2.2	44
39	Developing a translational ecology workforce. Frontiers in Ecology and the Environment, 2017, 15, 587-596.	4.0	50
40	Adapting DSSAT Model for Simulation of Cotton Yield for Nitrogen Levels and Planting Dates. Agronomy Journal, 2017, 109, 2639-2648.	1.8	13
41	Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sensing, 2016, 8, 384.	4.0	24
42	The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22, 2329-2352.	9.5	428
43	Empirical test on the relative climatic sensitivity between individuals of narrowly and broadly distributed species. Ecosphere, 2016, 7, e01227.	2.2	8
44	Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Scientific Reports, 2016, 6, 23356.	3.3	44
45	Climatic change controls productivity variation in global grasslands. Scientific Reports, 2016, 6, 26958.	3.3	44
46	Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 223, 233-240.	4.8	162
47	Elucidating biological opportunities and constraints on assisted colonization. Applied Vegetation Science, 2016, 19, 185-186.	1.9	3
48	Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians. Climatic Change, 2016, 134, 579-591.	3.6	36
49	Apparency revisited. Entomologia Experimentalis Et Applicata, 2015, 157, 74-85.	1.4	42
50	Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere, 2015, 6, 1-10.	2.2	54
51	Policy Relevant Conservation Science. Conservation Letters, 2015, 8, 309-311.	5.7	29
52	Multiple sources of uncertainty affect metrics for ranking conservation risk under climate change. Diversity and Distributions, 2015, 21, 111-122.	4.1	39
53	Expert opinion on extinction risk and climate change adaptation for biodiversity. Elementa, 2015, 3, .	3.2	13
54	Investment and the Policy Process in Conservation Monitoring. Conservation Biology, 2014, 28, 361-371.	4.7	12

#	Article	IF	Citations
55	Estimating the Spatial and Temporal Distribution of Species Richness within Sequoia and Kings Canyon National Parks. PLoS ONE, 2014, 9, e112465.	2.5	3
56	Graduate Student's Guide to Necessary Skills for Nonacademic Conservation Careers. Conservation Biology, 2013, 27, 24-34.	4.7	77
57	Achieving Conservation Science that Bridges the Knowledge–Action Boundary. Conservation Biology, 2013, 27, 669-678.	4.7	395
58	The value of a multi-faceted climate change vulnerability assessment to managing protected lands: Lessons from a case study in Point Reyes National Seashore. Journal of Environmental Management, 2013, 121, 37-47.	7.8	13
59	Translocation of imperiled species under changing climates. Annals of the New York Academy of Sciences, 2013, 1286, 15-28.	3.8	50
60	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
61	Growth–climate relationships for six subalpine tree species in a Mediterranean climate. Canadian Journal of Forest Research, 2013, 43, 1114-1126.	1.7	19
62	Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China. PLoS ONE, 2013, 8, e71559.	2.5	11
63	Conservation Investment for Rare Plants in Urban Environments. PLoS ONE, 2013, 8, e83809.	2.5	14
64	Natural Ecosystems., 2013,, 148-167.		6
65	Using niche models with climate projections to inform conservation management decisions. Biological Conservation, 2012, 155, 149-156.	4.1	143
66	Perspectives on the Open Standards for the Practice of Conservation. Biological Conservation, 2012, 155, 169-177.	4.1	61
67	Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges. BioScience, 2012, 62, 732-743.	4.9	212
68	Starve a competitor: evolution of luxury consumption as a competitive strategy. Theoretical Ecology, 2012, 5, 37-49.	1.0	35
69	Demographic modeling and monitoring cycle in a long-lived endangered shrub. Journal for Nature Conservation, 2011, 19, 330-338.	1.8	3
70	The effects of cultivation history on forest recovery in fallows in the Eastern Arc Mountain, Tanzania. Forest Ecology and Management, 2011, 261, 1042-1052.	3.2	30
71	Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Global Ecology and Biogeography, 2011, 20, 509-519.	5 . 8	122
72	Modeling the invasive emerald ash borer risk of spread using a spatially explicit cellular model. Landscape Ecology, 2010, 25, 353-369.	4.2	134

#	Article	IF	Citations
73	Incorporating sociocultural adaptive capacity in conservation hotspot assessments. Diversity and Distributions, 2010, 16, 439-450.	4.1	9
74	Tropical dry forest trees and the relationship between local abundance and geographic range. Journal of Biogeography, 2010, 37, 951-959.	3.0	24
75	A resource ratio theory of cooperation. Ecology Letters, 2010, 13, 349-359.	6.4	71
76	Distribution and Ecotypic Variation of the Invasive Annual Barb Goatgrass (<i>Aegilops triuncialis</i> on Serpentine Soil. Invasive Plant Science and Management, 2010, 3, 376-389.	1.1	14
77	A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology, 2009, 97, 4-9.	4.0	346
78	A global synthesis of plant extinction rates in urban areas. Ecology Letters, 2009, 12, 1165-1173.	6.4	253
79	Academic Research Training for a Nonacademic Workplace: a Case Study of Graduate Student Alumni Who Work in Conservation. Conservation Biology, 2009, 23, 1357-1368.	4.7	59
80	Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 2009, 15, 565-576.	4.1	323
81	The precautionary principle in managed relocation is misguided advice. Trends in Ecology and Evolution, 2009, 24, 474.	8.7	31
82	Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9721-9724.	7.1	339
83	Quantifying Plant Population Persistence in Humanâ€Dominated Landscapes. Conservation Biology, 2008, 22, 922-928.	4.7	44
84	Scientific Societies in the 21st Century: a Membership Crisis. Conservation Biology, 2008, 22, 1087-1089.	4.7	53
85	The Performance of the Endangered Species Act. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 279-299.	8.3	131
86	The woodland vegetation of the Katavi-Rukwa ecosystem in western Tanzania. Forest Ecology and Management, 2008, 255, 3382-3395.	3.2	40
87	A Framework for Debate of Assisted Migration in an Era of Climate Change. Conservation Biology, 2007, 21, 297-302.	4.7	727
88	Effects of dynamic taxonomy on rare species and conservation listing: insights from the Iberian vascular flora. Biodiversity and Conservation, 2007, 16, 4039-4050.	2.6	14
89	PREDICTING EXTINCTIONS AS A RESULT OF CLIMATE CHANGE. Ecology, 2006, 87, 1611-1615.	3.2	205
90	From Lilliput to Brobdingnag: Extending Models of Mycorrhizal Function across Scales. BioScience, 2006, 56, 889.	4.9	70

#	Article	IF	Citations
91	Woody vegetation structure and composition along a protection gradient in a miombo ecosystem of western Tanzania. Forest Ecology and Management, 2006, 230, 179-185.	3.2	82
92	Effects of fire on germination of Pterocarpus angolensis. Forest Ecology and Management, 2006, 233, 116-120.	3.2	16
93	Biotic homogenization of the California flora in urban and urbanizing regions. Biological Conservation, 2006, 127, 282-291.	4.1	145
94	The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecology Letters, 2006, 9, 501-515.	6.4	285
95	Using Population Count Data to Assess the Effects of Changing River Flow on an Endangered Riparian Plant. Conservation Biology, 2006, 20, 1132-1142.	4.7	23
96	How Conservation Scientists Can Help Develop Social Capital for Biodiversity. Conservation Biology, 2006, 20, 1550-1552.	4.7	39
97	Responses to Fire in Selected Tropical Dry Forest Trees 1. Biotropica, 2006, 38, 592-598.	1.6	67
98	Rare Species and Ecosystem Functioning. Conservation Biology, 2005, 19, 1019-1024.	4.7	323
99	Comparative taxonomic structure of the floras of two Mediterranean-climate regions: Iberia and California. Diversity and Distributions, 2005, 11, 399-408.	4.1	15
100	Growth of Valley Oak (Quercus Lobata Nee) in Four Floodplain Environments in the Central Valley of California. Plant Ecology, 2005, 176, 157-164.	1.6	7
101	Rare plants at the extremes of distribution: broadly and narrowly distributed rare species. Biodiversity and Conservation, 2005, 14, 1401-1420.	2.6	30
102	Recruitment of Pterocarpus angolensis in the wild. Forest Ecology and Management, 2005, 219, 169-175.	3.2	34
103	Patterns of rarity and taxonomic group size in plants. Biological Conservation, 2005, 126, 146-154.	4.1	55
104	Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States. J Agricultural Meteorology, 2005, 61, 29-37.	1.5	21
105	How fast and far might tree species migrate in the eastern United States due to climate change?. Global Ecology and Biogeography, 2004, 13, 209-219.	5.8	232
106	Potential colonization of newly available tree-species habitat under climate change: An analysis for five eastern US species. Landscape Ecology, 2004, 19, 787-799.	4.2	88
107	An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine. Canadian Journal of Forest Research, 2004, 34, 1343-1347.	1.7	30
108	Effect of selective logging on tree and understory regeneration in miombo woodland in western Tanzania. African Journal of Ecology, 2003, 41, 75-82.	0.9	32

#	Article	IF	CITATIONS
109	Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 2003, 178, 341-352.	3.2	95
110	Expanding comparative–advantage biological market models: contingency of mutualism on partner's resource requirements and acquisition trade–offs. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 913-919.	2.6	76
111	Conservation's Disenfranchised Urban Poor. BioScience, 2002, 52, 601.	4.9	52
112	Assessing the sustainability of harvest of Pterocarpus angolensis in Rukwa Region, Tanzania. Forest Ecology and Management, 2002, 170, 259-269.	3.2	54
113	Title is missing!. Landscape Ecology, 2002, 17, 189-190.	4.2	0
114	Modelling interspecific mutualisms as biological markets., 2001,, 173-184.		12
115	Predicting the Potential Future Distribution of Four Tree Species in Ohio Using Current Habitat Availability and Climatic Forcing. Ecosystems, 2001, 4, 568-581.	3.4	65
116	Rare species loss alters ecosystem function - invasion resistance. Ecology Letters, 2001, 4, 358-365.	6.4	315
117	Taxon size predicts rates of rarity in vascular plants. Ecology Letters, 2001, 4, 464-469.	6.4	78
118	You can help rare plants survive in the cities. Nature, 2001, 411, 991-992.	27.8	2
118	You can help rare plants survive in the cities. Nature, 2001, 411, 991-992. Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033.	27.8	2
	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous		
119	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology,	4.7	18
119	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology, 2000, 147, 21-35. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000,	4.7 1.6	18
119 120 121	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology, 2000, 147, 21-35. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000, 122, 297-305. Estimating the magnitude of decline of the Florida torreya (Torreya taxifolia Arn.). Biological	4.7 1.6 2.0	18 292 590
119 120 121 122	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology, 2000, 147, 21-35. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000, 122, 297-305. Estimating the magnitude of decline of the Florida torreya (Torreya taxifolia Arn.). Biological Conservation, 2000, 95, 77-84.	4.7 1.6 2.0 4.1	18 292 590
119 120 121 122	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology, 2000, 147, 21-35. Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000, 122, 297-305. Estimating the magnitude of decline of the Florida torreya (Torreya taxifolia Arn.). Biological Conservation, 2000, 95, 77-84. Effects of management burning on prairie insect species richness within a system of small, highly fragmented reserves. Biological Conservation, 2000, 96, 363-369. Modeling potential future individual tree-species distributions in the eastern United States under a	4.7 1.6 2.0 4.1	18 292 590 16

#	Article	IF	CITATIONS
127	SPECIALIZATION AND RESOURCE TRADE: BIOLOGICAL MARKETS AS A MODEL OF MUTUALISMS. Ecology, 1998, 79, 1029-1038.	3.2	180
128	The Distribution of Tree Species in Steepheads of the Apalachicola River Bluffs, Florida. Journal of the Torrey Botanical Society, 1998, 125, 309.	0.3	20
129	Effectiveness of a Vegetationâ€Based Approach to Insect Conservation. Conservation Biology, 1998, 12, 693-702.	4.7	30
130	Effectiveness of a Vegetation-Based Approach to Insect Conservation. Conservation Biology, 1998, 12, 693-702.	4.7	105
131	Specialization and Resource Trade: Biological Markets as a Model of Mutualisms. Ecology, 1998, 79, 1029.	3.2	13
132	The relationship between an endangered North American tree and an endophytic fungus. Chemistry and Biology, 1995, 2, 721-727.	6.0	78
133	Vegetation ecology of flatwoods on the Illinoian till plain. Journal of Vegetation Science, 1995, 6, 647-666.	2.2	18
134	The Catastrophic Loss of Torreya Taxifolia: Assessing Environmental Induction of Disease Hypotheses. , 1995, 5, 501-516.		26
135	Natural Distribution and Abundance of Forest Species and Communities in Northern Florida. Ecology, 1994, 75, 687-705.	3.2	54
136	Modelling effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodiversity and Conservation, 1993, 2, 51-61.	2.6	81
137	The search for pattern among rare plants: Are primitive species more likely to be rare?. Biological Conservation, 1993, 64, 121-127.	4.1	21
138	Allozyme variation of the endangered Florida torreya (<i>Torreyataxifolia</i>). Canadian Journal of Forest Research, 1993, 23, 2598-2602.	1.7	5
139	The Continuing Population Decline of Torreya taxifolia Arn Bulletin of the Torrey Botanical Club, 1993, 120, 275.	0.6	15
140	Potential effects of global climate change on the biodiversity of plants. Forestry Chronicle, 1992, 68, 462-471.	0.6	35
141	Conservation and Pharmaceutical Interests: The Case of Yew Trees. Conservation Biology, 1992, 6, 152-153.	4.7	0
142	Detecting a Species Limit from Pollen in Sediments. Journal of Biogeography, 1991, 18, 653.	3.0	80
143	Predicting tree frequencies from pollen frequency: an attempt to validate the R value method. New Phytologist, 1989, 112, 129-143.	7.3	45
144	Species Diversity Patterns in Woody Flora on Three North American Peninsulas. Journal of Biogeography, 1988, 15, 759.	3.0	16

#	Article	IF	CITATIONS
145	Spatially Explicit Analytical Models for Social–Ecological Systems. BioScience, 0, , .	4.9	6