
Mark W Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186242/publications.pdf Version: 2024-02-01

MADE W/ SCHWADTZ

#	Article	IF	CITATIONS
1	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
2	A Framework for Debate of Assisted Migration in an Era of Climate Change. Conservation Biology, 2007, 21, 297-302.	4.7	727
3	Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000, 122, 297-305.	2.0	590
4	The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22, 2329-2352.	9.5	428
5	Achieving Conservation Science that Bridges the Knowledge–Action Boundary. Conservation Biology, 2013, 27, 669-678.	4.7	395
6	A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology, 2009, 97, 4-9.	4.0	346
7	Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9721-9724.	7.1	339
8	Rare Species and Ecosystem Functioning. Conservation Biology, 2005, 19, 1019-1024.	4.7	323
9	Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions, 2009, 15, 565-576.	4.1	323
10	Rare species loss alters ecosystem function - invasion resistance. Ecology Letters, 2001, 4, 358-365.	6.4	315
11	Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology, 2000, 147, 21-35.	1.6	292
12	The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecology Letters, 2006, 9, 501-515.	6.4	285
13	A global synthesis of plant extinction rates in urban areas. Ecology Letters, 2009, 12, 1165-1173.	6.4	253
14	How fast and far might tree species migrate in the eastern United States due to climate change?. Global Ecology and Biogeography, 2004, 13, 209-219.	5.8	232
15	Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges. BioScience, 2012, 62, 732-743.	4.9	212
16	Foundations of translational ecology. Frontiers in Ecology and the Environment, 2017, 15, 541-550.	4.0	212
17	PREDICTING EXTINCTIONS AS A RESULT OF CLIMATE CHANGE. Ecology, 2006, 87, 1611-1615.	3.2	205
18	Choosing the Appropriate Scale of Reserves for Conservation. Annual Review of Ecology, Evolution, and Systematics, 1999, 30, 83-108.	6.7	184

#	Article	IF	CITATIONS
19	SPECIALIZATION AND RESOURCE TRADE: BIOLOGICAL MARKETS AS A MODEL OF MUTUALISMS. Ecology, 1998, 79, 1029-1038.	3.2	180
20	Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 223, 233-240.	4.8	162
21	Biotic homogenization of the California flora in urban and urbanizing regions. Biological Conservation, 2006, 127, 282-291.	4.1	145
22	Using niche models with climate projections to inform conservation management decisions. Biological Conservation, 2012, 155, 149-156.	4.1	143
23	Decision Support Frameworks and Tools for Conservation. Conservation Letters, 2018, 11, e12385.	5.7	139
24	Modeling the invasive emerald ash borer risk of spread using a spatially explicit cellular model. Landscape Ecology, 2010, 25, 353-369.	4.2	134
25	The Performance of the Endangered Species Act. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 279-299.	8.3	131
26	Modeling potential future individual tree-species distributions in the eastern United States under a climate change scenario: a case study with Pinus virginiana. Ecological Modelling, 1999, 115, 77-93.	2.5	124
27	Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Global Ecology and Biogeography, 2011, 20, 509-519.	5.8	122
28	Effectiveness of a Vegetation-Based Approach to Insect Conservation. Conservation Biology, 1998, 12, 693-702.	4.7	105
29	Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 2003, 178, 341-352.	3.2	95
30	Potential colonization of newly available tree-species habitat under climate change: An analysis for five eastern US species. Landscape Ecology, 2004, 19, 787-799.	4.2	88
31	Woody vegetation structure and composition along a protection gradient in a miombo ecosystem of western Tanzania. Forest Ecology and Management, 2006, 230, 179-185.	3.2	82
32	Modelling effects of habitat fragmentation on the ability of trees to respond to climatic warming. Biodiversity and Conservation, 1993, 2, 51-61.	2.6	81
33	Detecting a Species Limit from Pollen in Sediments. Journal of Biogeography, 1991, 18, 653.	3.0	80
34	The relationship between an endangered North American tree and an endophytic fungus. Chemistry and Biology, 1995, 2, 721-727.	6.0	78
35	Taxon size predicts rates of rarity in vascular plants. Ecology Letters, 2001, 4, 464-469.	6.4	78
36	Graduate Student's Guide to Necessary Skills for Nonacademic Conservation Careers. Conservation Biology, 2013, 27, 24-34.	4.7	77

#	Article	IF	CITATIONS
37	Expanding comparative–advantage biological market models: contingency of mutualism on partner's resource requirements and acquisition trade–offs. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 913-919.	2.6	76
38	A resource ratio theory of cooperation. Ecology Letters, 2010, 13, 349-359.	6.4	71
39	From Lilliput to Brobdingnag: Extending Models of Mycorrhizal Function across Scales. BioScience, 2006, 56, 889.	4.9	70
40	Responses to Fire in Selected Tropical Dry Forest Trees1. Biotropica, 2006, 38, 592-598.	1.6	67
41	Predicting the Potential Future Distribution of Four Tree Species in Ohio Using Current Habitat Availability and Climatic Forcing. Ecosystems, 2001, 4, 568-581.	3.4	65
42	Perspectives on the Open Standards for the Practice of Conservation. Biological Conservation, 2012, 155, 169-177.	4.1	61
43	Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 287, 107943.	4.8	61
44	Academic Research Training for a Nonacademic Workplace: a Case Study of Graduate Student Alumni Who Work in Conservation. Conservation Biology, 2009, 23, 1357-1368.	4.7	59
45	Effects of management burning on prairie insect species richness within a system of small, highly fragmented reserves. Biological Conservation, 2000, 96, 363-369.	4.1	57
46	Climate change vulnerability assessment of forests in the Southwest USA. Climatic Change, 2018, 148, 387-402.	3.6	57
47	Patterns of rarity and taxonomic group size in plants. Biological Conservation, 2005, 126, 146-154.	4.1	55
48	Natural Distribution and Abundance of Forest Species and Communities in Northern Florida. Ecology, 1994, 75, 687-705.	3.2	54
49	Assessing the sustainability of harvest of Pterocarpus angolensis in Rukwa Region, Tanzania. Forest Ecology and Management, 2002, 170, 259-269.	3.2	54
50	Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere, 2015, 6, 1-10.	2.2	54
51	Scientific Societies in the 21st Century: a Membership Crisis. Conservation Biology, 2008, 22, 1087-1089.	4.7	53
52	Conservation's Disenfranchised Urban Poor. BioScience, 2002, 52, 601.	4.9	52
53	Navigating translational ecology: creating opportunities for scientist participation. Frontiers in Ecology and the Environment, 2017, 15, 578-586.	4.0	51
54	Translocation of imperiled species under changing climates. Annals of the New York Academy of Sciences, 2013, 1286, 15-28.	3.8	50

#	Article	IF	CITATIONS
55	Developing a translational ecology workforce. Frontiers in Ecology and the Environment, 2017, 15, 587-596.	4.0	50
56	Predicting tree frequencies from pollen frequency: an attempt to validate the R value method. New Phytologist, 1989, 112, 129-143.	7.3	45
57	The Decade on Ecosystem Restoration is an impetus to get it right. Conservation Science and Practice, 2019, 1, e145.	2.0	45
58	Quantifying Plant Population Persistence in Humanâ€Dominated Landscapes. Conservation Biology, 2008, 22, 922-928.	4.7	44
59	Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Scientific Reports, 2016, 6, 23356.	3.3	44
60	Climatic change controls productivity variation in global grasslands. Scientific Reports, 2016, 6, 26958.	3.3	44
61	The impact of climate change uncertainty on California's vegetation and adaptation management. Ecosphere, 2017, 8, e02021.	2.2	44
62	Apparency revisited. Entomologia Experimentalis Et Applicata, 2015, 157, 74-85.	1.4	42
63	The woodland vegetation of the Katavi-Rukwa ecosystem in western Tanzania. Forest Ecology and Management, 2008, 255, 3382-3395.	3.2	40
64	How Conservation Scientists Can Help Develop Social Capital for Biodiversity. Conservation Biology, 2006, 20, 1550-1552.	4.7	39
65	Multiple sources of uncertainty affect metrics for ranking conservation risk under climate change. Diversity and Distributions, 2015, 21, 111-122.	4.1	39
66	Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians. Climatic Change, 2016, 134, 579-591.	3.6	36
67	Potential effects of global climate change on the biodiversity of plants. Forestry Chronicle, 1992, 68, 462-471.	0.6	35
68	Starve a competitor: evolution of luxury consumption as a competitive strategy. Theoretical Ecology, 2012, 5, 37-49.	1.0	35
69	Recruitment of Pterocarpus angolensis in the wild. Forest Ecology and Management, 2005, 219, 169-175.	3.2	34
70	Effect of selective logging on tree and understory regeneration in miombo woodland in western Tanzania. African Journal of Ecology, 2003, 41, 75-82.	0.9	32
71	The precautionary principle in managed relocation is misguided advice. Trends in Ecology and Evolution, 2009, 24, 474.	8.7	31
72	An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine. Canadian Journal of Forest Research, 2004, 34, 1343-1347.	1.7	30

#	Article	IF	CITATIONS
73	Rare plants at the extremes of distribution: broadly and narrowly distributed rare species. Biodiversity and Conservation, 2005, 14, 1401-1420.	2.6	30
74	Effectiveness of a Vegetationâ€Based Approach to Insect Conservation. Conservation Biology, 1998, 12, 693-702.	4.7	30
75	The effects of cultivation history on forest recovery in fallows in the Eastern Arc Mountain, Tanzania. Forest Ecology and Management, 2011, 261, 1042-1052.	3.2	30
76	Policy Relevant Conservation Science. Conservation Letters, 2015, 8, 309-311.	5.7	29
77	Global policy for assisted colonization of species. Science, 2021, 372, 456-458.	12.6	29
78	The Catastrophic Loss of Torreya Taxifolia: Assessing Environmental Induction of Disease Hypotheses. , 1995, 5, 501-516.		26
79	Assessment of the Conservation Measures Partnership's effort to improve conservation outcomes through adaptive management. Conservation Biology, 2018, 32, 926-937.	4.7	26
80	Intensified burn severity in California's northern coastal mountains by drier climatic condition. Environmental Research Letters, 2020, 15, 104033.	5.2	26
81	Tropical dry forest trees and the relationship between local abundance and geographic range. Journal of Biogeography, 2010, 37, 951-959.	3.0	24
82	Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sensing, 2016, 8, 384.	4.0	24
83	Amplifying plant disease risk through assisted migration. Conservation Letters, 2019, 12, e12605.	5.7	24
84	Using Population Count Data to Assess the Effects of Changing River Flow on an Endangered Riparian Plant. Conservation Biology, 2006, 20, 1132-1142.	4.7	23
85	The search for pattern among rare plants: Are primitive species more likely to be rare?. Biological Conservation, 1993, 64, 121-127.	4.1	21
86	Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States. J Agricultural Meteorology, 2005, 61, 29-37.	1.5	21
87	The Distribution of Tree Species in Steepheads of the Apalachicola River Bluffs, Florida. Journal of the Torrey Botanical Society, 1998, 125, 309.	0.3	20
88	Growth–climate relationships for six subalpine tree species in a Mediterranean climate. Canadian Journal of Forest Research, 2013, 43, 1114-1126.	1.7	19
89	Trusting land to volunteers: How and why land trusts involve volunteers in ecological monitoring. Biological Conservation, 2017, 208, 48-54.	4.1	19
90	A vision for documenting and sharing knowledge in conservation. Conservation Science and Practice, 2019, 1, e1.	2.0	19

#	Article	IF	CITATIONS
91	Vegetation ecology of flatwoods on the Illinoian till plain. Journal of Vegetation Science, 1995, 6, 647-666.	2.2	18
92	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033.	4.7	18
93	Identifying climate risk perceptions, information needs, and barriers to information exchange among public land managers. Science of the Total Environment, 2018, 616-617, 245-254.	8.0	17
94	Species Diversity Patterns in Woody Flora on Three North American Peninsulas. Journal of Biogeography, 1988, 15, 759.	3.0	16
95	Estimating the magnitude of decline of the Florida torreya (Torreya taxifolia Arn.). Biological Conservation, 2000, 95, 77-84.	4.1	16
96	Effects of fire on germination of Pterocarpus angolensis. Forest Ecology and Management, 2006, 233, 116-120.	3.2	16
97	Solve the biodiversity crisis with funding. Science, 2019, 365, 1256-1256.	12.6	16
98	Open access and academic imperialism. Conservation Biology, 2019, 33, 5-6.	4.7	16
99	The Continuing Population Decline of Torreya taxifolia Arn Bulletin of the Torrey Botanical Club, 1993, 120, 275.	0.6	15
100	Comparative taxonomic structure of the floras of two Mediterranean-climate regions: Iberia and California. Diversity and Distributions, 2005, 11, 399-408.	4.1	15
101	Effects of dynamic taxonomy on rare species and conservation listing: insights from the Iberian vascular flora. Biodiversity and Conservation, 2007, 16, 4039-4050.	2.6	14
102	Distribution and Ecotypic Variation of the Invasive Annual Barb Goatgrass (<i>Aegilops triuncialis</i>) on Serpentine Soil. Invasive Plant Science and Management, 2010, 3, 376-389.	1.1	14
103	Ensuring tests of conservation interventions build on existing literature. Conservation Biology, 2020, 34, 781-783.	4.7	14
104	Conservation Investment for Rare Plants in Urban Environments. PLoS ONE, 2013, 8, e83809.	2.5	14
105	The value of a multi-faceted climate change vulnerability assessment to managing protected lands: Lessons from a case study in Point Reyes National Seashore. Journal of Environmental Management, 2013, 121, 37-47.	7.8	13
106	Adapting DSSAT Model for Simulation of Cotton Yield for Nitrogen Levels and Planting Dates. Agronomy Journal, 2017, 109, 2639-2648.	1.8	13
107	The unaddressed threat of invasive animals in U.S. National Parks. Biological Invasions, 2020, 22, 177-188.	2.4	13
108	Expert opinion on extinction risk and climate change adaptation for biodiversity. Elementa, 2015, 3, .	3.2	13

#	Article	IF	CITATIONS
109	Specialization and Resource Trade: Biological Markets as a Model of Mutualisms. Ecology, 1998, 79, 1029.	3.2	13
110	Confronting parachute science in conservation. Conservation Science and Practice, 2022, 4, .	2.0	13
111	Modelling interspecific mutualisms as biological markets. , 2001, , 173-184.		12
112	Investment and the Policy Process in Conservation Monitoring. Conservation Biology, 2014, 28, 361-371.	4.7	12
113	Traitâ€based climate vulnerability of native rodents in southwestern Mexico. Ecology and Evolution, 2020, 10, 5864-5876.	1.9	11
114	The <scp>COVID</scp> â€19 pandemic: A learnable moment for conservation. Conservation Science and Practice, 2020, 2, e255.	2.0	11
115	Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China. PLoS ONE, 2013, 8, e71559.	2.5	11
116	Incorporating sociocultural adaptive capacity in conservation hotspot assessments. Diversity and Distributions, 2010, 16, 439-450.	4.1	9
117	Conservation lessons from taboos and trolley problems. Conservation Biology, 2021, 35, 794-803.	4.7	9
118	Empirical test on the relative climatic sensitivity between individuals of narrowly and broadly distributed species. Ecosphere, 2016, 7, e01227.	2.2	8
119	Commonness, rarity, and oligarchies of woody plants in the tropical dry forests of Mexico. Biotropica, 2017, 49, 493-501.	1.6	8
120	Coâ€development of a risk assessment strategy for managed relocation. Ecological Solutions and Evidence, 2021, 2, e12092.	2.0	8
121	Fitting the solutions to the problems in managing extreme wildfire in California. Environmental Research Communications, 2021, 3, 081005.	2.3	8
122	Growth of Valley Oak (Quercus Lobata Nee) in Four Floodplain Environments in the Central Valley of California. Plant Ecology, 2005, 176, 157-164.	1.6	7
123	Climate risk on two vegetation axes—Tropical wetâ€toâ€dry and temperate aridâ€toâ€moist forests. Journal of Biogeography, 2018, 45, 2361-2374.	3.0	7
124	Spatially Explicit Analytical Models for Social–Ecological Systems. BioScience, 0, , .	4.9	6
125	Natural Ecosystems. , 2013, , 148-167.		6
126	Allozyme variation of the endangered Florida torreya (<i>Torreyataxifolia</i>). Canadian Journal of Forest Research, 1993, 23, 2598-2602.	1.7	5

#	Article	IF	CITATIONS
127	Is Slow Growth of the Endangered Torreya taxifolia (Arn.) Normal?. Journal of the Torrey Botanical Society, 1999, 126, 307.	0.3	5
128	Generic theories of change for conservation strategies: A new series supporting evidenceâ€based conservation practice. Conservation Science and Practice, 2021, 3, e400.	2.0	5
129	Improving inferences about private land conservation by accounting for incomplete reporting. Conservation Biology, 2021, 35, 1174-1185.	4.7	4
130	Demographic modeling and monitoring cycle in a long-lived endangered shrub. Journal for Nature Conservation, 2011, 19, 330-338.	1.8	3
131	Elucidating biological opportunities and constraints on assisted colonization. Applied Vegetation Science, 2016, 19, 185-186.	1.9	3
132	Fitting the US National Park Service for Change. BioScience, 2019, 69, 651-657.	4.9	3
133	"Forest mismanagement―misleads. Science, 2020, 370, 417-417.	12.6	3
134	The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degradation and Development, 2021, 32, 4033-4041.	3.9	3
135	Estimating the Spatial and Temporal Distribution of Species Richness within Sequoia and Kings Canyon National Parks. PLoS ONE, 2014, 9, e112465.	2.5	3
136	You can help rare plants survive in the cities. Nature, 2001, 411, 991-992.	27.8	2
137	Ecological careers in natureâ€based nonâ€governmental organizations. Frontiers in Ecology and the Environment, 2017, 15, 338-339.	4.0	2
138	A vision for documenting and sharing knowledge in conservation. Conservation Science and Practice, 2019, 1, e1.	2.0	2
139	States lack endangered species reporting. Science, 2019, 365, 229-230.	12.6	1
140	Conservation and Pharmaceutical Interests: The Case of Yew Trees. Conservation Biology, 1992, 6, 152-153.	4.7	0
141	Title is missing!. Landscape Ecology, 2002, 17, 189-190.	4.2	0
142	OBSOLETE: Endangered Species Act. , 2018, , .		0
143	Plan S and publishing: reply to Lehtomäi etÂal. 2019. Conservation Biology, 2019, 33, 1203-1204.	4.7	0
144	Bridging the knowledgeâ€implementation gap between agency and academia: A case study of a graduate research experience. Conservation Science and Practice, 2020, 2, e286.	2.0	0

#	Article	IF	CITATIONS
145	Assisted colonization risk assessment—Response. Science, 2021, 372, 925-926.	12.6	0