
Karel Masek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal stability of cobalt oxide thin films and its enhancement by cerium oxide. Applied Surface Science, 2022, 593, 153430.	6.1	3
2	Methanol to hydrogen conversion on cobalt–ceria catalysts prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2021, 46, 17197-17208.	7.1	7
3	The comparative study of electrical, optical and catalytic properties of Co3O4 thin nanocrystalline films prepared by reactive high-power impulse and radio frequency magnetron sputtering. Thin Solid Films, 2019, 686, 137427.	1.8	11
4	Oxidation and erosion of single crystal CdTe surface in distilled water and NaCl solution. Thin Solid Films, 2019, 686, 137426.	1.8	0
5	RHEED and XPS study of palladium interaction with cerium oxide surface. Vacuum, 2019, 167, 438-444.	3.5	11
6	Cyclodextrin-Polypyrrole Coatings of Scaffolds for Tissue Engineering. Polymers, 2019, 11, 459.	4.5	9
7	Methanol oxidation on pure and platinum-doped tungsten oxide supported by activated carbon. Materials Chemistry and Physics, 2019, 228, 147-159.	4.0	8
8	Structural and photoelectron studies of <scp>Sn‧nO_x</scp> and <scp>SnO₂</scp> nanoparticles on <scp>TiO₂</scp> (110) surface. Surface and Interface Analysis, 2018, 50, 1116-1121.	1.8	3
9	1D tungsten oxide nanostructures on a Cu(1 1 0) surface. Journal of Physics Condensed Matter, 2018, 3 465001.	0 _{1.8}	1
10	Thermal stability of bulk p-CdTe. Journal of Alloys and Compounds, 2016, 680, 8-13.	5.5	6
11	Optical and electrical study of CdZnTe surfaces passivated by KOH and NH4F solutions. Applied Surface Science, 2016, 389, 1214-1219.	6.1	12
12	Tungsten oxide nanowire on copper surfaces: a DFT model. RSC Advances, 2016, 6, 88463-88468.	3.6	1
13	Two-dimensional, high valence-doped ceria: Ce 6 WO 12 (100)/W(110). Applied Surface Science, 2016, 372, 152-157.	6.1	3
14	Faceting Transition at the Oxide–Metal Interface: (13 13 1) Facets on Cu(110) Induced by Carpet-Like Ceria Overlayer. Journal of Physical Chemistry C, 2015, 119, 1851-1858.	3.1	7
15	Altering properties of cerium oxide thin films by Rh doping. Materials Research Bulletin, 2015, 67, 5-13.	5.2	20
16	Photoemission Study of Methanol Adsorption and Decomposition on Pd/CeO2(111)/Cu(111) Thin Film Model Catalyst. Catalysis Letters, 2015, 145, 1474-1482.	2.6	5
17	Effects of oxygen addition in reactive cluster beam deposition of tungsten by magnetron sputtering with gas aggregation. Thin Solid Films, 2015, 591, 194-199.	1.8	11
18	RHEED structural study of the novel tin-cerium oxide catalyst. Ceramics International, 2015, 41, 4946-4952.	4.8	6

#	Article	IF	CITATIONS
19	Contactless resistivity and photoconductivity correlation to surface preparation of CdZnTe. Applied Surface Science, 2014, 315, 144-148.	6.1	19
20	RHEED and XPS study of cerium interaction with SnO2 (110) surface. Ceramics International, 2014, 40, 323-329.	4.8	13
21	Evidence for two growth modes during tungsten oxide vapor deposition on mica substrates. Journal of Crystal Growth, 2014, 394, 67-73.	1.5	1
22	A Slightly Oxidizing Etchant for Polishing of CdTe and CdZnTe Surfaces. Journal of Electronic Materials, 2013, 42, 3059-3065.	2.2	3
23	Photoemission and RHEED study of the supported Pt and Au epitaxial alloy clusters. Applied Surface Science, 2013, 282, 746-756.	6.1	6
24	Polarity driven morphology of CeO2(100) islands on Cu(111). Applied Surface Science, 2013, 285, 766-771.	6.1	18
25	Photoemission and LEED study of the Sn/Rh(111) surface—early oxidation steps and thermal stability. Journal of Physics Condensed Matter, 2012, 24, 015002.	1.8	2
26	Slow-Polishing Iodine-Based Etchant for CdTe and CdZnTe Single Crystals. Journal of Electronic Materials, 2012, 41, 2838-2845.	2.2	5
27	RHEED study of the growth of cerium oxide on Cu(1 1 1). Applied Surface Science, 2012, 259, 34-38.	6.1	23
28	Structural and electronic studies of supported Pt and Au epitaxial clusters on tungsten oxide surface. Vacuum, 2012, 86, 586-589.	3.5	12
29	Chemical Polishing of CdTe and CdZnTe in Iodine–Methanol Etching Solutions. Journal of Electronic Materials, 2011, 40, 1802-1808.	2.2	18
30	Non-Destructive Depth Profiling of the Activated Ti-Zr-V Getter by Means of Excitation Energy Resolved Photoelectron Spectroscopy. Analytical Sciences, 2010, 26, 209-215.	1.6	5
31	Photoemission study of the tin doped cerium oxide thin films prepared by RF magnetron sputtering. Thin Solid Films, 2010, 518, 2206-2209.	1.8	19
32	The interface structure and band alignment at alumina/Cu(Al) alloy interfaces—Influence of the crystallinity of alumina films. Applied Surface Science, 2010, 256, 3051-3057.	6.1	16
33	Ptâ€doped tungsten oxide surface: photoemission and RHEED study. Surface and Interface Analysis, 2010, 42, 540-544.	1.8	11
34	Chemical Interaction of CdTe and CdZnTe with Aqueous Solutions of H2O2-HI-Tartaric Acid. Journal of Electronic Materials, 2009, 38, 1645-1651.	2.2	12
35	Surface characterization of activated Ti–Zr–V NEG coatings. Vacuum, 2009, 83, 824-827.	3.5	11
36	Sn–CeO2 thin films prepared by rf magnetron sputtering: XPS and SIMS study. Applied Surface Science, 2009, 255, 6656-6660.	6.1	33

#	Article	IF	CITATIONS
37	Bridging the Component-Based and Service-Oriented Worlds. , 2009, , .		1
38	The growth of Au/Pd/alumina/Cu–Al system studied by SRPES. Applied Surface Science, 2008, 254, 4340-4345.	6.1	3
39	An epitaxial hexagonal tungsten bronze as precursor for WO3 nanorods on mica. Journal of Crystal Growth, 2008, 310, 3318-3324.	1.5	16
40	Interface termination and band alignment of epitaxially grown alumina films on Cu–Al alloy. Journal of Applied Physics, 2008, 103, 033707.	2.5	22
41	Photoemission spectroscopy and electron diffraction study of Pd/tungsten oxide/W(110) epitaxial system. Journal of Physics: Conference Series, 2008, 100, 012008.	0.4	5
42	The growth of Au/Pd on alumina/Cu-Al system. Journal of Physics: Conference Series, 2008, 100, 012040.	0.4	1
43	RHEED and XPS study of Pd–Sn bimetallic system growth. Surface Science, 2007, 601, 4475-4478.	1.9	11
44	Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide. Surface Science, 2007, 601, 5585-5594.	1.9	26
45	Evolution of the oxidation states at the WO3 thin film surface during annealing in gases. Vacuum, 2007, 82, 261-265.	3.5	1
46	Structure of Pd/tungsten oxide epitaxial system. Vacuum, 2007, 82, 274-277.	3.5	6
47	Photoelectron spectroscopy and secondary ion mass spectrometry characterization of diamond-like carbon films. Thin Solid Films, 2007, 515, 5386-5390.	1.8	5
48	XPS and LEED study of Pd and Au growth on alumina/Cu–Al surface. Applied Surface Science, 2007, 254, 490-493.	6.1	2
49	Chemical Etching of CdTe in Aqueous Solutions of H2O2-HI-Citric Acid. Journal of Electronic Materials, 2007, 36, 1021-1024.	2.2	26
50	Photoelectron-spectroscopic and reactivity investigation of thin Pd–Sn films prepared by magnetron sputtering. Applied Surface Science, 2007, 253, 5400-5403.	6.1	3
51	Photoelectron Spectroscopy Characterization of Diamond-like Carbon Films. Applied Spectroscopy, 2006, 60, 936-940.	2.2	5
52	SRPES investigation of tungsten oxide in different oxidation states. Surface Science, 2006, 600, 1624-1627.	1.9	22
53	Ultra-thin oxide layer formation on Cu–9%Al(111) surface and Pd growth studied using reflection high energy electron diffraction and Auger electron spectroscopy. Surface Science, 2006, 600, 4357-4360.	1.9	13
54	Study of the growth of supported Pd–Sn bimetallic nanoclusters. Thin Solid Films, 2006, 515, 563-566.	1.8	2

#	Article	IF	CITATIONS
55	Activation of binary Zr–V non-evaporable getters: synchrotron radiation photoemission study. Applied Surface Science, 2005, 243, 106-112.	6.1	15
56	Structural study of epitaxial tungsten oxide nanoclusters. Vacuum, 2005, 80, 58-63.	3.5	1
57	Sims study of Ti–Zr–V NEG thermal activation process. Vacuum, 2005, 80, 47-52.	3.5	7
58	RHEED study of the growth of Pd–Al/MgO bimetallic system. Vacuum, 2005, 80, 102-107.	3.5	4
59	Structure of tungsten oxide nanoclusters. Surface Science, 2004, 566-568, 383-389.	1.9	27
60	RHEED study of Pd/Al bimetallic thin film growth on NaCl (001) substrate. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 113-117.	1.7	1
61	Residual surface oxide on ZrV getter—XPS, LEIS and SIMS study. Vacuum, 2004, 74, 305-309.	3.5	23
62	Activation of binary Zr–V non-evaporable getters: a soft X-ray photoemission study of carbide formation. Surface Science, 2004, 566-568, 1246-1249.	1.9	13
63	XPS and SIMS study of the ageing mechanism of Zr–V non-evaporable getter films. Applied Surface Science, 2004, 235, 202-206.	6.1	24
64	Influence of Pd–Co bimetallic interaction on CO adsorption properties of PdxCo1â^'x alloys: XPS, TPD and static SIMS studies. Vacuum, 2003, 71, 41-45.	3.5	14
65	Reflection high-energy electron loss spectroscopy (RHEELS): a new approach in the investigation of epitaxial thin film growth by reflection high-energy electron diffraction (RHEED). Vacuum, 2003, 71, 59-64.	3.5	5
66	Mechanism of non-evaporable getter activation XPS and static SIMS study of Zr44V56 alloy. Vacuum, 2003, 71, 317-322.	3.5	35
67	Oxidation of tungsten nanoclusters. Thin Solid Films, 2003, 444, 9-16.	1.8	13
68	X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy study of activation mechanism of Zr–V low activation temperature nonevaporable getter films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 797-805.	2.1	26
69	Influence of the alumina surface orientation to the Rh particle growth and reconstruction. Surface Science, 2002, 507-510, 655-661.	1.9	12
70	RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al2O3 substrates. Surface Science, 2002, 507-510, 300-304.	1.9	3
71	RHEED study of Nb thin film growth on Cu(111) and (100) single-crystals. Vacuum, 2001, 61, 217-221.	3.5	9
72	Influence of surface structure on the growth of Au on αAl2O3 (1̄012). Thin Solid Films, 2000, 374, 134-141.	1.8	21

#	Article	IF	CITATIONS
73	RHEED INVESTIGATION OF Pd/Al BIMETALLIC SYSTEM ON KCl(001) SUBSTRATE. Surface Review and Letters, 1999, 06, 825-828.	1.1	4
74	RHEED investigation of lattice deformations of α-Al2O3 supported Pd particles. European Physical Journal D, 1999, 9, 557-560.	1.3	11
75	RHEED investigation of lattice deformations of $\hat{I}\pm$ -Al2O3 supported Pd particles. , 1999, , 557-560.		1
76	RHEED study of Pd thin film growth on $\hat{I}\pm$ -Al2O3 substrate. Vacuum, 1998, 50, 151-155.	3.5	13
77	RHEED study of Nb thin film growth on α-Al2O3 (0001) substrate. Thin Solid Films, 1998, 317, 183-188.	1.8	10
78	Preparation of single-crystalline Nb–Al2O3–Nb structures by molecular-beam deposition. Surface Science, 1998, 417, 139-144.	1.9	3
79	Influence of Alumina Surface Structure on Growth and Adsorption Properties of Pd Particles. Surface Review and Letters, 1998, 05, 397-401.	1.1	6
80	RHEED Study of Pd Particle Growth on α-Alumina and NaCl Substrates. Surface Review and Letters, 1998, 05, 403-408.	1.1	7
81	Miniature electron bombardment evaporation source: evaporation rate measurement. European Physical Journal D, 1997, 47, 261-268.	0.4	34
82	Rh particle growth on insulator substrates: RHEED study. Thin Solid Films, 1996, 286, 330-335.	1.8	14
83	Study of the growth of rhodium particles on different substrates. Thin Solid Films, 1995, 260, 252-258.	1.8	19
84	Adsorption of CO on Small Supported Rhodium Particles: SSIMS and TPD Study. Journal of Catalysis, 1993, 143, 492-498.	6.2	36
85	CO dissociation and oxidation on small supported rhodium particles: SSIMS and TPR study. Catalysis Letters, 1993, 21, 175-182.	2.6	29
86	Catalytic activity of small supported Pd/Al2O3 particles: CO oxidation. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1989, 13, 77-77.	1.0	0
87	Catalytic activity of small supported Pd/Al2O3 particles: CO oxidation. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1988, 10, 499-501.	1.0	3