Yong Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. Journal of Colloid and Interface Science, 2022, 606, 1205-1218.	9.4	20
2	The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. Journal of Colloid and Interface Science, 2022, 606, 768-783.	9.4	59
3	A novel high phosphorusâ€efficiency phosphaphenanthrene curing agent for fabricating flame retardant and toughened epoxy thermoset. Polymers for Advanced Technologies, 2022, 33, 770-781.	3.2	10
4	High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: Enhanced adsorption, mechanical and fire safety properties. Journal of Colloid and Interface Science, 2022, 609, 794-806.	9.4	23
5	Carbonizationâ€dominated synergistic behaviors of ammonium hypophosphite/ <scp>EG</scp> composite in improving flame retardancy of flexible polyurethane foam. Polymers for Advanced Technologies, 2022, 33, 3238-3248.	3.2	3
6	Applications of GO/OAâ€POSS Layerâ€byâ€Layer selfâ€assembly nanocoating on flame retardancy and smoke suppression of flexible polyurethane foam. Polymers for Advanced Technologies, 2021, 32, 4516-4530.	3.2	10
7	Strengthen flame retardancy of epoxy thermoset by montmorillonite particles adhering phosphorusâ€containing fragments. Journal of Applied Polymer Science, 2020, 137, 47500.	2.6	18
8	Flame retardant and toughening behaviors of bioâ€based DOPOâ€containing curing agent in epoxy thermoset. Polymers for Advanced Technologies, 2020, 31, 461-471.	3.2	33
9	Epoxy thermoset with enhanced flame retardancy and physical-mechanical properties based on reactive phosphaphenanthrene compound. Polymer Degradation and Stability, 2020, 172, 109063.	5.8	40
10	Impact on flame retardancy and degradation behavior of intumescent flameâ€retardant <scp>EP</scp> composites by a hyperbranched triazineâ€based charring agent. Polymers for Advanced Technologies, 2020, 31, 3316-3327.	3.2	30
11	Jointâ€aggregation intumescent flameâ€retardant effect of ammonium polyphosphate and charring agent in polypropylene. Polymers for Advanced Technologies, 2020, 31, 1699-1708.	3.2	15
12	Work engagement, tenure, and external opportunities moderate perceived high-performance work systems and affective commitment. Social Behavior and Personality, 2019, 47, 1-16.	0.6	4
13	Intumescent flame retardant behavior of charring agents with different aggregation of piperazine/triazine groups in polypropylene. Polymer Degradation and Stability, 2019, 169, 108982.	5.8	53
14	Improving the fracture toughness and flame retardant properties of epoxy thermosets by phosphaphenanthrene/siloxane cluster-like molecules with multiple reactive groups. Composites Part B: Engineering, 2019, 178, 107481.	12.0	69
15	Flame Inhibition and Charring Effect of Aromatic Polyimide and Aluminum Diethylphosphinate in Polyamide 6. Polymers, 2019, 11, 74.	4.5	23
16	High-efficiency flame retardant behavior of bi-DOPO compound with hydroxyl group on epoxy resin. Polymer Degradation and Stability, 2019, 166, 344-352.	5.8	113
17	Enhancement of an organic–metallic hybrid charring agent on flame retardancy of ethylene-vinyl acetate copolymer. Royal Society Open Science, 2019, 6, 181413.	2.4	24
18	Career Adaptability, Work Engagement, and Employee Well-Being Among Chinese Employees: The Role of Guanxi. Frontiers in Psychology, 2019, 10, 1029.	2.1	45

Yong Qiu

#	Article	IF	CITATIONS
19	Synergistic Charring Flame-Retardant Behavior of Polyimide and Melamine Polyphosphate in Glass Fiber-Reinforced Polyamide 66. Polymers, 2019, 11, 1851.	4.5	24
20	Why Am I Willing to Speak Up? The Impact of Spiritual Leadership on Employee Voice Behavior. Frontiers in Psychology, 2019, 10, 2718.	2.1	11
21	Synthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in Polyester. Polymers, 2019, 11, 1969.	4.5	14
22	High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups. Polymer Degradation and Stability, 2018, 153, 210-219.	5.8	69
23	Flameâ€retardant behavior of a phosphorus/silicon compound on polycarbonate. Journal of Applied Polymer Science, 2018, 135, 45815.	2.6	19
24	Synergistic flameâ€retardant effect and mechanisms of boron/phosphorus compounds on epoxy resins. Polymers for Advanced Technologies, 2018, 29, 641-648.	3.2	56
25	Toughening Effect and Flame-Retardant Behaviors of Phosphaphenanthrene/Phenylsiloxane Bigroup Macromolecules in Epoxy Thermoset. Macromolecules, 2018, 51, 9992-10002.	4.8	144
26	Synergistic charring effect of triazinetrione-alkyl-phosphinate and phosphaphenanthrene derivatives in epoxy thermosets. RSC Advances, 2017, 7, 46505-46513.	3.6	14
27	Pyrolysis and flame retardant behavior of a novel compound with multiple phosphaphenanthrene groups in epoxy thermosets. Journal of Analytical and Applied Pyrolysis, 2017, 127, 23-30.	5.5	30
28	Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset. Polymer International, 2017, 66, 1883-1890.	3.1	22
29	Gaseous-phase flame retardant behavior of a multi-phosphaphenanthrene compound in a polycarbonate composite. RSC Advances, 2017, 7, 51290-51297.	3.6	18
30	Joint flameâ€retardant effect of triazineâ€rich and triazine/phosphaphenanthrene compounds on epoxy resin thermoset. Journal of Applied Polymer Science, 2016, 133, .	2.6	12
31	Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Advances, 2016, 6, 56018-56027.	3.6	57
32	Flame-retardant behavior of bi-group molecule derived from phosphaphenanthrene and triazine groups on polylactic acid. Polymers for Advanced Technologies, 2016, 27, 781-788.	3.2	38
33	High-performance flame retardancy by char-cage hindering and free radical quenching effects in epoxy thermosets. Polymer, 2015, 68, 262-269.	3.8	123
34	The flame retardant groupâ€synergisticâ€effect of a phosphaphenanthrene and triazine doubleâ€group compound in epoxy resin. Journal of Applied Polymer Science, 2014, 131, .	2.6	92
35	Pyrolysis route of a novel flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame-retardant effect on epoxy resin. Polymer Degradation and Stability, 2014, 107, 98-105.	5.8	173
36	The effect of morphology on the flameâ€retardant behaviors of melamine cyanurate in PA6 composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	24

#	Article	IF	CITATIONS
37	Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer, 2011, 52, 5486-5493.	3.8	251