
Huan Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4183780/publications.pdf Version: 2024-02-01

Ηιιανι Υάλ

#	Article	IF	CITATIONS
1	Single-Atom Pd ₁ /Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene. Journal of the American Chemical Society, 2015, 137, 10484-10487.	13.7	905
2	Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nature Energy, 2019, 4, 512-518.	39.5	756
3	Bottom-up precise synthesis of stable platinum dimers on graphene. Nature Communications, 2017, 8, 1070.	12.8	466
4	Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature, 2019, 565, 631-635.	27.8	423
5	Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt ₁ Catalyst. ACS Catalysis, 2017, 7, 887-891.	11.2	407
6	Atomicâ€Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€Site Photocatalyst. Angewandte Chemie - International Edition, 2017, 56, 12191-12196.	13.8	269
7	Single-atom catalysts and their applications in organic chemistry. Journal of Materials Chemistry A, 2018, 6, 8793-8814.	10.3	174
8	Hollow Metal–Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 18163-18171.	8.0	159
9	Tandem In ₂ O ₃ -Pt/Al ₂ O ₃ catalyst for coupling of propane dehydrogenation to selective H ₂ combustion. Science, 2021, 371, 1257-1260.	12.6	148
10	Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nature Communications, 2018, 9, 3197.	12.8	146
11	Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. Journal of Catalysis, 2015, 324, 59-68.	6.2	133
12	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	6.7	132
13	Engineering Local and Global Structures of Single Co Atoms for a Superior Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 5862-5870.	11.2	126
14	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11, 4389.	12.8	110
15	Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2021, 11, 4498-4509.	11.2	94
16	Precisely Controlled Porous Alumina Overcoating on Pd Catalyst by Atomic Layer Deposition: Enhanced Selectivity and Durability in Hydrogenation of 1,3-Butadiene. ACS Catalysis, 2015, 5, 2735-2739.	11.2	79
17	Revisiting the Au Particle Size Effect on TiO ₂ -Coated Au/TiO ₂ Catalysts in CO Oxidation Reaction. Journal of Physical Chemistry C, 2016, 120, 9174-9183.	3.1	76
18	Understanding the underlying mechanism of improved selectivity in pd1 single-atom catalyzed hydrogenation reaction. Journal of Catalysis, 2018, 366, 70-79.	6.2	70

Huan Yan

#	Article	IF	CITATIONS
19	Precisely Applying TiO ₂ Overcoat on Supported Au Catalysts Using Atomic Layer Deposition for Understanding the Reaction Mechanism and Improved Activity in CO Oxidation. Journal of Physical Chemistry C, 2016, 120, 478-486.	3.1	66
20	Toward Understanding of the Support Effect on Pd ₁ Single-Atom-Catalyzed Hydrogenation Reactions. Journal of Physical Chemistry C, 2019, 123, 7922-7930.	3.1	63
21	Promoted Glycerol Oxidation Reaction in an Interfaceâ€Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763.	21.0	40
22	Atomicâ€Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€Site Photocatalyst. Angewandte Chemie, 2017, 129, 12359-12364.	2.0	36
23	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. Journal of Materials Chemistry A, 2019, 7, 15575-15579.	10.3	34
24	Expedient synthesis of <i>E</i> -hydrazone esters and 1 <i>H</i> -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	10.3	31
25	Identifying Boron Active Sites for the Oxidative Dehydrogenation of Propane. ACS Catalysis, 2021, 11, 9370-9376.	11.2	27
26	Coating Pd/Al 2 O 3 catalysts with FeO x enhances both activity and selectivity in 1,3-butadiene hydrogenation. Chinese Journal of Catalysis, 2017, 38, 1581-1587.	14.0	16