
Arthur Kosowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4183655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CMB-S4: Forecasting Constraints on Primordial Gravitational Waves. Astrophysical Journal, 2022, 926, 54.	4.5	79
2	Bias to cosmic microwave background lensing reconstruction from the kinematic Sunyaev-Zel'dovich effect at reionization. Physical Review D, 2022, 105, .	4.7	5
3	Can small-scale baryon inhomogeneities resolve the Hubble tension? An investigation with ACT DR4. Physical Review D, 2021, 104, .	4.7	15
4	The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 130-161.	1.2	22
5	Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel'dovich effect. Physical Review D, 2020, 102, .	4.7	56
6	Numerical simulations of gravitational waves from early-universe turbulence. Physical Review D, 2020, 102, .	4.7	70
7	The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	5.4	148
8	The Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2250-2263.	4.4	68
9	Atacama Cosmology Telescope: Constraints on cosmic birefringence. Physical Review D, 2020, 101, .	4.7	50
10	The Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light. Astrophysical Journal Letters, 2020, 903, L13.	8.3	15
11	Quantifying the thermal Sunyaev–Zel'dovich effect and excess millimetre emission in quasar environments. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2315-2335.	4.4	16
12	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	5.4	741
13	Quantum particle production effects on the cosmic expansion. Physical Review D, 2019, 100, .	4.7	5
14	Exploring suppressed long-distance correlations as the cause of suppressed large-angle correlations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5174-5181.	4.4	6
15	The Atacama Cosmology Telescope: two-season ACTPol extragalactic point sources and their polarization properties. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5239-5262.	4.4	27
16	Magnetism in the Early Universe. Proceedings of the International Astronomical Union, 2018, 14, 295-298.	0.0	2
17	Inflationary dynamics reconstruction via inverse-scattering theory. Physical Review D, 2017, 95, .	4.7	3
18	Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum. Physical Review D, 2017, 95, .	4.7	104

ARTHUR KOSOWSKY

#	Article	IF	CITATIONS
19	Cosmological parameters from pre-Planck CMB measurements: A 2017 update. Physical Review D, 2017, 95, .	4.7	33
20	Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey. Physical Review D, 2016, 93, .	4.7	90
21	Constraining the history of inflation from microwave background polarimetry and laser interferometry. Physical Review D, 2015, 91, .	4.7	9
22	Microwave background polarization as a probe of large-angle correlations. Physical Review D, 2015, 91, .	4.7	13
23	Microwave background correlations from dipole anisotropy modulation. Physical Review D, 2015, 92, .	4.7	38
24	Cosmic expansion in extended quasidilaton massive gravity. Physical Review D, 2015, 91, .	4.7	22
25	The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing. Monthly Notices of the Royal Astronomical Society, 2015, 451, 849-858.	4.4	41
26	Gaussian approximation of peak values in the integrated Sachs-Wolfe effect. Physical Review D, 2015, 91,	4.7	17
27	Evidence of Lensing of the Cosmic Microwave Background by Dark Matter Halos. Physical Review Letters, 2015, 114, 151302.	7.8	70
28	Precision epoch of reionization studies with next-generation CMB experiments. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 010-010.	5.4	83
29	The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	5.4	194
30	Primordial magnetic helicity constraints from WMAP nine-year data. Physical Review D, 2014, 90, .	4.7	25
31	Inflationary Tensor Perturbations after BICEP2. Physical Review Letters, 2014, 112, 191302.	7.8	20
32	The Atacama Cosmology Telescope: CMB polarization at 200 < â"" < 9000. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 007-007.	5.4	121
33	Extreme-Value Statistics for Testing Dark Energy. Proceedings of the International Astronomical Union, 2014, 10, 54-56.	0.0	Ο
34	Cosmological parameters from pre-planck cosmic microwave background measurements. Physical Review D, 2013, 87, .	4.7	65
35	The Atacama Cosmology Telescope: cosmological parameters from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 060-060.	5.4	215
36	The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3469-3480.	4.4	20

ARTHUR KOSOWSKY

#	Article	IF	CITATIONS
37	Evidence of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect. Physical Review Letters, 2012, 109, 041101.	7.8	185
38	THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM. Astrophysical Journal, 2012, 749, 90.	4.5	97
39	Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements. Physical Review Letters, 2011, 107, 021302.	7.8	118
40	Galaxy peculiar velocities from large-scale supernova surveys as a dark energy probe. Physical Review D, 2011, 83, .	4.7	13
41	Signature of Local Motion in the Microwave Sky. Physical Review Letters, 2011, 106, 191301.	7.8	51
42	Cell Phone Activation and Brain Glucose Metabolism. JAMA - Journal of the American Medical Association, 2011, 305, 2066.	7.4	2
43	THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV-ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY. Astrophysical Journal, 2011, 737, 61.	4.5	234
44	Can we test inflationary expansion of the early universe?. Physics Magazine, 2010, 3, .	0.1	5
45	Dwarf Galaxies, MOND, and Relativistic Gravitation. Advances in Astronomy, 2010, 2010, 1-9.	1.1	5
46	SOUTHERN COSMOLOGY SURVEY. I. OPTICAL CLUSTER DETECTIONS AND PREDICTIONS FOR THE SOUTHERN COMMON-AREA MILLIMETER-WAVE EXPERIMENTS. Astrophysical Journal, 2009, 698, 1221-1231.	4.5	24
47	Faraday rotation limits on a primordial magnetic field from Wilkinson Microwave Anisotropy Probe five-year data. Physical Review D, 2009, 80, .	4.7	64
48	A future test of gravitation using galaxy cluster velocities. Physical Review D, 2009, 80, .	4.7	28
49	Generation of circular polarization of the cosmic microwave background. Physical Review D, 2009, 79, ·	4.7	35
50	Effects of quasar feedback in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2008, 389, 34-44.	4.4	31
51	Dark energy constraints from galaxy cluster peculiar velocities. Physical Review D, 2008, 77, .	4.7	55
52	Systematic errors in Sunyaev–Zeldovich surveys of galaxy cluster velocities. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 030.	5.4	8
53	Detectability of gravitational waves from phase transitions. Physical Review D, 2008, 78, .	4.7	88
54	Cosmological Constraints from Galaxy Cluster Velocity Statistics. Astrophysical Journal, 2007, 659, L83-L86.	4.5	39

ARTHUR KOSOWSKY

#	Article	IF	CITATIONS
55	Milgrom Relation Models for Spiral Galaxies from Two-dimensional Velocity Maps. Astronomical Journal, 2007, 133, 1698-1709.	4.7	4
56	The Sunyaev-Zel'dovich Effect from Quasar Feedback. Astrophysical Journal, 2007, 661, L113-L116.	4.5	24
57	Spectrum of gravitational radiation from primordial turbulence. Physical Review D, 2007, 76, .	4.7	142
58	The Atacama Cosmology Telescope project: A progress report. New Astronomy Reviews, 2006, 50, 969-976.	12.8	52
59	Impact of systematic errors in Sunyaev–Zel'dovich surveys of galaxy clusters. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 001-001.	5.4	14
60	Faraday rotation of the cosmic microwave background polarization by a stochastic magnetic field. Physical Review D, 2005, 71, .	4.7	124
61	Constrained Cluster Parameters from Sunyaevâ€Zel'dovich Observations. Astrophysical Journal, 2005, 635, 22-34.	4.5	19
62	Gravitational Lensing of the Microwave Background by Galaxy Clusters. Astrophysical Journal, 2004, 616, 8-15.	4.5	37
63	Fast cosmological parameter estimation from microwave background temperature and polarization power spectra. Physical Review D, 2004, 70, .	4.7	31
64	The Atacama Cosmology Telescope. New Astronomy Reviews, 2003, 47, 939-943.	12.8	128
65	Effect of Internal Flows on Sunyaevâ€Zeldovich Measurements of Cluster Peculiar Velocities. Astrophysical Journal, 2003, 587, 524-532.	4.5	75
66	Microwave background signatures of a primordial stochastic magnetic field. Physical Review D, 2002, 65, .	4.7	176
67	Efficient cosmological parameter estimation from microwave background anisotropies. Physical Review D, 2002, 66, .	4.7	133
68	Gravitational radiation from cosmological turbulence. Physical Review D, 2002, 66, .	4.7	203
69	The cosmic microwave background. Series in High Energy Physics, Cosmology, and Gravitation, 2001, , .	0.1	0
70	Introduction to microwave background polarization. New Astronomy Reviews, 1999, 43, 157-168.	12.8	36
71	THECOSMICMICROWAVEBACKGROUND ANDPARTICLEPHYSICS. Annual Review of Nuclear and Particle Science, 1999, 49, 77-123.	10.2	129
72	Minkowski functional description of microwave background Gaussianity. New Astronomy, 1998, 3, 75-99.	1.8	67

Arthur Kosowsky

#	Article	IF	CITATIONS
73	Detectability of inflationary gravitational waves with microwave background polarization. Physical Review D, 1998, 57, 685-691.	4.7	87
74	A Probe of Primordial Gravity Waves and Vorticity. Physical Review Letters, 1997, 78, 2058-2061.	7.8	661
75	Statistics of cosmic microwave background polarization. Physical Review D, 1997, 55, 7368-7388.	4.7	773
76	Cosmological-parameter determination with microwave background maps. Physical Review D, 1996, 54, 1332-1344.	4.7	384
77	Determining cosmological parameters from the microwave background. Nuclear Physics, Section B, Proceedings Supplements, 1996, 51, 49-53.	0.4	6
78	Cosmic Microwave Background Polarization. Annals of Physics, 1996, 246, 49-85.	2.8	188
79	Weighing the Universe with the Cosmic Microwave Background. Physical Review Letters, 1996, 76, 1007-1010.	7.8	160
80	Faraday Rotation of Microwave Background Polarization by a Primordial Magnetic Field. Astrophysical Journal, 1996, 469, 1.	4.5	213
81	CBR anisotropy and the running of the scalar spectral index. Physical Review D, 1995, 52, R1739-R1743.	4.7	219
82	Noise correlations in cosmic microwave background experiments. Astrophysical Journal, 1995, 440, L37.	4.5	3
83	Gravitational radiation from first-order phase transitions. Physical Review D, 1994, 49, 2837-2851.	4.7	593
84	Issues Concerning Gravity Waves From First-Order Phase Transitionsa. Annals of the New York Academy of Sciences, 1993, 688, 660-665.	3.8	0
85	Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many-bubble collisions. Physical Review D, 1993, 47, 4372-4391.	4.7	317
86	Gravitational radiation from colliding vacuum bubbles. Physical Review D, 1992, 45, 4514-4535.	4.7	365
87	Gravitational waves from first-order cosmological phase transitions. Physical Review Letters, 1992, 69, 2026-2029.	7.8	326