Piotr Walczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4183171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytocompatible manganese dioxide-based hydrogel nanoreactors for MRI imaging. Materials Science and Engineering C, 2022, 134, 112575.	7.3	8
2	Local autoimmune encephalomyelitis model in a rat brain with precise control over lesion placement. PLoS ONE, 2022, 17, e0262677.	2.5	2
3	In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nature Biomedical Engineering, 2022, 6, 658-666.	22.5	18
4	Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. International Journal of Molecular Sciences, 2022, 23, 2465.	4.1	5
5	Inhomogeneous magnetization transfer <scp>MRI</scp> of white matter structures in the hypomyelinated shiverer mouseÂbrain. Magnetic Resonance in Medicine, 2022, 88, 332-340.	3.0	3
6	Hyperosmolar blood–brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance. Nature Protocols, 2022, 17, 76-94.	12.0	26
7	A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calciumâ€Mediated Excitotoxicity. Advanced Science, 2022, 9, e2103265.	11.2	7
8	Transplantation of Human Glial Progenitors to Immunodeficient Neonatal Mice with Amyotrophic Lateral Sclerosis (SOD1/rag2). Antioxidants, 2022, 11, 1050.	5.1	2
9	Imaging as a tool to accelerate the translation of extracellular vesicleâ€based therapies for central nervous system diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1688.	6.1	4
10	Long term intravital single cell tracking under multiphoton microscopy. Journal of Neuroscience Methods, 2021, 349, 109042.	2.5	3
11	Intra-arterial transplantation of stem cells in large animals as a minimally-invasive strategy for the treatment of disseminated neurodegeneration. Scientific Reports, 2021, 11, 6581.	3.3	6
12	Traumatic brain injury does not disrupt costimulatory blockade-induced immunological tolerance to glial-restricted progenitor allografts. Journal of Neuroinflammation, 2021, 18, 104.	7.2	3
13	The COVIDâ€19 Menace. Global Challenges, 2021, 5, 2100004.	3.6	5
14	<i>In Vivo</i> Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation. ACS Applied Materials & Interfaces, 2021, 13, 23423-23437.	8.0	5
15	Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue. Nature Communications, 2021, 12, 2941.	12.8	33
16	White matter demyelination predates axonal injury after ischemic stroke in cynomolgus monkeys. Experimental Neurology, 2021, 340, 113655.	4.1	9
17	Mesenchymal Stem Cells Do Not Lose Direct Labels Including Iron Oxide Nanoparticles and DFO-89Zr Chelates through Secretion of Extracellular Vesicles. Membranes, 2021, 11, 484.	3.0	0
18	Two in One: Use of Divalent Manganese Ions as Both Cross-Linking and MRI Contrast Agent for Intrathecal Injection of Hydrogel-Embedded Stem Cells. Pharmaceutics, 2021, 13, 1076.	4.5	9

#	Article	IF	CITATIONS
19	Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Research and Therapy, 2021, 12, 448.	5.5	25
20	Reversible blood-brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials, 2021, 275, 120942.	11.4	24
21	Follow-up of intra-arterial delivery of bevacizumab for treatment of butterfly glioblastoma in patient with first-in-human, real-time MRI-guided intra-arterial neurointervention. Journal of NeuroInterventional Surgery, 2021, 13, 1037-1039.	3.3	4
22	Deuterium oxide as a contrast medium for real-time MRI-guided endovascular neurointervention. Theranostics, 2021, 11, 6240-6250.	10.0	7
23	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
24	Myelin-Independent Therapeutic Potential of Canine Glial-Restricted Progenitors Transplanted in Mouse Model of Dysmyelinating Disease. Cells, 2021, 10, 2968.	4.1	2
25	Modeling hyperosmotic blood–brain barrier opening within human tissue-engineered in vitro brain microvessels. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1517-1532.	4.3	43
26	Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. Journal of Controlled Release, 2020, 317, 312-321.	9.9	35
27	Neuroinflammation After Stereotactic Radiosurgery-Induced Brain Tumor Disintegration Is Linked to Persistent Cognitive Decline in a Mouse Model of Metastatic Disease. International Journal of Radiation Oncology Biology Physics, 2020, 108, 745-757.	0.8	7
28	Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions. Journal of Materials Chemistry B, 2020, 8, 5928-5937.	5.8	21
29	Mesenchymal stem cells injected into carotid artery to target focal brain injury home to perivascular space. Theranostics, 2020, 10, 6615-6628.	10.0	25
30	Modeling human pediatric and adult gliomas in immunocompetent mice through costimulatory blockade. OncoImmunology, 2020, 9, 1776577.	4.6	8
31	Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie - International Edition, 2019, 58, 15512-15517.	13.8	22
32	Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie, 2019, 131, 15658-15663.	2.0	1
33	In Vivo Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Two olor NIR Imaging. Advanced Functional Materials, 2019, 29, 1903753.	14.9	45
34	Proteolytic Rafts for Improving Intraparenchymal Migration of Minimally Invasively Administered Hydrogel-Embedded Stem Cells. International Journal of Molecular Sciences, 2019, 20, 3083.	4.1	3
35	Labeling of human mesenchymal stem cells with different classes of vital stains: robustness and toxicity. Stem Cell Research and Therapy, 2019, 10, 187.	5.5	19
36	Stem Cells as an Emerging Paradigm in Stroke 4. Stroke, 2019, 50, 3299-3306.	2.0	68

#	Article	IF	CITATIONS
37	Imaging Myeloperoxidase in Demyelinating Lesions: Biomarker with Clinical Value for Multiple Sclerosis or Merely a Tool for Animal Research?. Radiology, 2019, 293, 166-167.	7.3	Ο
38	Induction of immunological tolerance to myelinogenic glial-restricted progenitor allografts. Brain, 2019, 142, 3456-3472.	7.6	15
39	Real-time MRI guidance for intra-arterial drug delivery in a patient with a brain tumor: technical note. BMJ Case Reports, 2019, 12, bcr-2018-014469.	0.5	19
40	Thrombus Imaging in Acute Stroke. Stroke, 2019, 50, 1948-1949.	2.0	2
41	Immunological Characteristics and Properties of Glial Restricted Progenitors of Mice, Canine Primary Culture Suspensions, and Human QSV40 Immortalized Cell Lines for Prospective Therapies of Neurodegenerative Disorders. Cell Transplantation, 2019, 28, 1140-1154.	2.5	4
42	PET imaging of distinct brain uptake of a nanobody and similarly-sized PAMAM dendrimers after intra-arterial administration. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1940-1951.	6.4	33
43	Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells and Development, 2019, 28, 1059-1077.	2.1	7
44	Republished: Real-time MRI guidance for intra-arterial drug delivery in a patient with a brain tumor: technical note. Journal of NeuroInterventional Surgery, 2019, 11, e3-e3.	3.3	4
45	Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomaterialia, 2019, 95, 60-72.	8.3	26
46	The Role of Glia in Canine Degenerative Myelopathy: Relevance to Human Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2019, 56, 5740-5748.	4.0	18
47	In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Molecular Imaging and Biology, 2019, 21, 1071-1078.	2.6	9
48	Biodistribution of Glial Progenitors in a Three Dimensional-Printed Model of the Piglet Cerebral Ventricular System. Stem Cells and Development, 2019, 28, 515-527.	2.1	1
49	The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Research and Therapy, 2019, 10, 343.	5.5	13
50	Single-cell, high-throughput analysis of cell docking to vessel wall. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2308-2320.	4.3	13
51	Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials, 2019, 190-191, 24-37.	11.4	141
52	A Distinct Advantage to Intraarterial Delivery of ⁸⁹ Zr-Bevacizumab in PET Imaging of Mice With and Without Osmotic Opening of the Blood–Brain Barrier. Journal of Nuclear Medicine, 2019, 60, 617-622.	5.0	49
53	Chemobrain as a Product of Growing Success in Chemotherapy - Focus On Glia As Both A Victim And A Cure. Neuropsychiatry, 2019, 09, 2207-2216.	0.4	20
54	Selection of Thermotolerant Corynebacterium glutamicum Strains for Organic Acid Biosynthesis. Food Technology and Biotechnology, 2019, 57, 249-259.	2.1	2

#	Article	IF	CITATIONS
55	Intra-Arterial Delivery of Cell Therapies for Stroke. Stroke, 2018, 49, 1075-1082.	2.0	75
56	Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. Npj Regenerative Medicine, 2018, 3, 8.	5.2	51
57	Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia, 2018, 66, 907-919.	4.9	9
58	Overexpression of VLA-4 in glial-restricted precursors enhances their endothelial docking and induces diapedesis in a mouse stroke model. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 835-846.	4.3	24
59	Sphingolipids and microRNA Changes in Blood following Blast Traumatic Brain Injury: An Exploratory Study. Journal of Neurotrauma, 2018, 35, 353-361.	3.4	25
60	MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals. Scientific Reports, 2018, 8, 16490.	3.3	22
61	Real-Time MRI Guidance for Reproducible Hyperosmolar Opening of the Blood-Brain Barrier in Mice. Frontiers in Neurology, 2018, 9, 921.	2.4	28
62	MRI-guided intracerebral convection-enhanced injection of gliotoxins to induce focal demyelination in swine. PLoS ONE, 2018, 13, e0204650.	2.5	8
63	Quantification of motor neuron loss and muscular atrophy in ricin-induced focal nerve injury. Journal of Neuroscience Methods, 2018, 308, 142-150.	2.5	7
64	Transplanted human glial-restricted progenitors can rescue the survival of dysmyelinated mice independent of the production of mature, compact myelin. Experimental Neurology, 2017, 291, 74-86.	4.1	35
65	Real-Time Dual MRI for Predicting and Subsequent Validation of Intra-Arterial Stem Cell Delivery to the Central Nervous System. Neuromethods, 2017, , 175-191.	0.3	0
66	Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke. ACS Nano, 2017, 11, 10480-10488.	14.6	142
67	Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Scientific Reports, 2017, 7, 1103.	3.3	23
68	Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Scientific Reports, 2017, 7, 4644.	3.3	38
69	In Vivo Micro-CT Imaging of Human Mesenchymal Stem Cells Labeled with Gold-Poly- <scp>l</scp> -Lysine Nanocomplexes. Advanced Functional Materials, 2017, 27, 1604213.	14.9	95
70	Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2346-2358.	4.3	63
71	Split Tolerance in a Murine Model of Heterotopic En Bloc Chest Wall Transplantation. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1595.	0.6	5
72	Rabbit Model of Human Gliomas: Implications for Intra-Arterial Drug Delivery. PLoS ONE, 2017, 12, e0169656.	2.5	12

#	Article	IF	CITATIONS
73	An immunocompetent mouse model of human glioblastoma. Oncotarget, 2017, 8, 61072-61082.	1.8	30
74	Chapter 10 Evolution of Genetically Encoded CEST MRI Reporters: Opportunities and Challenges. , 2017, , 193-218.		0
75	Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival. Stem Cells International, 2016, 2016, 1-9.	2.5	50
76	Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Theranostics, 2016, 6, 1588-1600.	10.0	74
77	Predicting and optimizing the territory of blood–brain barrier opening by superselective intra-arterial cerebral infusion under dynamic susceptibility contrast MRI guidance. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 569-575.	4.3	40
78	Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood–brain barrier opening after intra-arterial infusion. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1186-1194.	4.3	24
79	Stereotaxic Injection into the Rat Spinal Cord. Neuromethods, 2016, , 133-140.	0.3	0
80	Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Molecular Pharmaceutics, 2016, 13, 3043-3053.	4.6	20
81	Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Experimental Neurology, 2016, 275, 154-161.	4.1	17
82	A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels. Nature Nanotechnology, 2016, 11, 95-102.	31.5	140
83	Concise Review: Using Stem Cells to Prevent the Progression of Myopia—A Concept. Stem Cells, 2015, 33, 2104-2113.	3.2	23
84	The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Research and Therapy, 2015, 6, 11.	5.5	153
85	Pre- and postmortem imaging of transplanted cells. International Journal of Nanomedicine, 2015, 10, 5543.	6.7	11
86	The dark side of the force – constraints and complications of cell therapies for stroke. Frontiers in Neurology, 2015, 6, 155.	2.4	124
87	Quantitative "Hot-Spot―Imaging of Transplanted Stem Cells Using Superparamagnetic Tracers and Magnetic Particle Imaging. Tomography, 2015, 1, 91-97.	1.8	115
88	Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials, 2015, 42, 144-150.	11.4	64
89	Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells and Development, 2015, 24, 2219-2242.	2.1	29
90	Effect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells. Acta Neurobiologiae Experimentalis, 2015, 75, 144-59.	0.7	17

#	Article	IF	CITATIONS
91	Long-Term MRI Cell Tracking after Intraventricular Delivery in a Patient with Global Cerebral Ischemia and Prospects for Magnetic Navigation of Stem Cells within the CSF. PLoS ONE, 2014, 9, e97631.	2.5	55
92	Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. Magnetic Resonance in Medicine, 2014, 71, 1798-1812.	3.0	115
93	Human Protamine-1 as an MRI Reporter Gene Based on Chemical Exchange. ACS Chemical Biology, 2014, 9, 134-138.	3.4	64
94	Characterization of a bioactive peptide with cytomodulatory effect released from casein. European Food Research and Technology, 2014, 238, 315-322.	3.3	10
95	Survival of Neural Progenitors Allografted into the CNS of Immunocompetent Recipients is Highly Dependent on Transplantation Site. Cell Transplantation, 2014, 23, 253-262.	2.5	34
96	Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiologiae Experimentalis, 2014, 74, 188-96.	0.7	33
97	Cell motility of neural stem cells is reduced after SPIOâ€labeling, which is mitigated after exocytosis. Magnetic Resonance in Medicine, 2013, 69, 255-262.	3.0	89
98	Screening of Lactobacillus strains for their ability to bind Benzo(a)pyrene and the mechanism of the process. Food and Chemical Toxicology, 2013, 59, 67-71.	3.6	54
99	Differentiation of strains from the <i><scp>B</scp>acillus cereus</i> group by <scp>RFLP</scp> â€ <scp>PFGE</scp> genomic fingerprinting. Electrophoresis, 2013, 34, 3023-3028.	2.4	7
100	The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 2013, 34, 5521-5529.	11.4	125
101	PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples. Journal of Microbiological Methods, 2013, 95, 295-301.	1.6	44
102	Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control. Experimental Neurology, 2013, 247, 73-79.	4.1	26
103	MRI-detectable pH nanosensors incorporated intoÂhydrogels for inÂvivo sensing of transplanted-cell viability. Nature Materials, 2013, 12, 268-275.	27.5	189
104	Transforming Thymidine into a Magnetic Resonance Imaging Probe for Monitoring Gene Expression. Journal of the American Chemical Society, 2013, 135, 1617-1624.	13.7	80
105	Cell Size and Velocity of Injection are Major Determinants of the Safety of Intracarotid Stem Cell Transplantation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 921-927.	4.3	130
106	Characterization of Soybean Protein Hydrolysates able to Promote the Proliferation of <i>Streptococcus Thermophilus</i> ST. Journal of Food Science, 2013, 78, M575-81.	3.1	17
107	MR Monitoring of Minimally Invasive Delivery of Mesenchymal Stem Cells into the Porcine Intervertebral Disc. PLoS ONE, 2013, 8, e74658.	2.5	30
108	Using C-Arm X-Ray Imaging to Guide Local Reporter Probe Delivery for Tracking Stem Cell Engraftment. Theranostics, 2013, 3, 916-926.	10.0	10

#	Article	IF	CITATIONS
109	Strategies for Enhanced, MRI-Guided Targeting of Stem Cells to Stroke Lesions. , 2013, , 75-91.		0
110	Genetic engineering of stem cells for enhanced therapy. Acta Neurobiologiae Experimentalis, 2013, 73, 1-18.	0.7	41
111	Use of MR Cell Tracking to Evaluate Targeting of Glial Precursor Cells to Inflammatory Tissue by Exploiting the Very Late Antigen-4 Docking Receptor. Radiology, 2012, 265, 175-185.	7.3	52
112	Immunomodulation by Transplanted Human Embryonic Stem Cellâ€Derived Oligodendroglial Progenitors in Experimental Autoimmune Encephalomyelitis. Stem Cells, 2012, 30, 2820-2829.	3.2	38
113	Neonatal desensitization does not universally prevent xenograft rejection. Nature Methods, 2012, 9, 856-858.	19.0	19
114	In Vivo Tracking Techniques for Cellular Regeneration, Replacement, and Redirection. Journal of Nuclear Medicine, 2012, 53, 1825-1828.	5.0	19
115	Use of Magnetocapsules for in Vivo Visualization and Enhanced Survival of Xenogeneic HepG2 Cell Transplants. Cell Medicine, 2012, 4, 77-84.	5.0	16
116	Noninvasive Monitoring of Immunosuppressive Drug Efficacy to Prevent Rejection of Intracerebral Glial Precursor Allografts. Cell Transplantation, 2012, 21, 2149-2157.	2.5	15
117	Personalized nanomedicine advancements for stem cell tracking. Advanced Drug Delivery Reviews, 2012, 64, 1488-1507.	13.7	70
118	X-Ray-Visible Microcapsules Containing Mesenchymal Stem Cells Improve Hind Limb Perfusion in a Rabbit Model of Peripheral Arterial Disease. Stem Cells, 2012, 30, 1286-1296.	3.2	31
119	Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for <italic>in vivo</italic> imaging of stem cells. Journal of Biomedical Optics, 2012, 17, 016004.	2.6	47
120	In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magnetic Resonance in Medicine, 2012, 67, 1106-1113.	3.0	104
121	ICVâ€transplanted human glial precursor cells are shortâ€lived yet exert immunomodulatory effects in mice with EAE. Clia, 2012, 60, 1117-1129.	4.9	29
122	An in vivo optical system: Control and monitor cortical activity with improved laser speckle contrast imaging and optogenetics. , 2011, , .		2
123	Monitoring Enzyme Activity Using a Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent. Journal of the American Chemical Society, 2011, 133, 16326-16329.	13.7	83
124	Tracking stem cells using magnetic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 343-355.	6.1	224
125	Longâ€ŧerm MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magnetic Resonance in Medicine, 2011, 65, 564-574.	3.0	105
126	Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: A serial MR imaging study. Magnetic Resonance in Medicine, 2011, 65, 1738-1749.	3.0	28

#	Article	IF	CITATIONS
127	Human glial-restricted progenitors survive, proliferate, and preserve electrophysiological function in rats with focal inflammatory spinal cord demyelination. Glia, 2011, 59, 499-510.	4.9	59
128	Use of perfluorocarbon nanoparticles for nonâ€invasive multimodal cell tracking of human pancreatic islets. Contrast Media and Molecular Imaging, 2011, 6, 251-259.	0.8	83
129	Fluorocapsules for Improved Function, Immunoprotection, and Visualization of Cellular Therapeutics with MR, US, and CT Imaging. Radiology, 2011, 258, 182-191.	7.3	100
130	MPI cell tracking: what can we learn from MRI?. Proceedings of SPIE, 2011, 7965, 79650z.	0.8	29
131	Optogenetic-guided cortical plasticity after nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8838-8843.	7.1	61
132	MRI of Transplanted Neural Stem Cells. Methods in Molecular Biology, 2011, 711, 435-449.	0.9	14
133	Evoked potential and behavioral outcomes for experimental autoimmune encephalomyelitis in Lewis rats. Neurological Sciences, 2010, 31, 595-601.	1.9	65
134	Optimization of magnetosonoporation for stem cell labeling. NMR in Biomedicine, 2010, 23, 480-484.	2.8	14
135	Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magnetic Resonance in Medicine, 2010, 63, 1031-1043.	3.0	99
136	Magnetosonoporation: Instant magnetic labeling of stem cells. Magnetic Resonance in Medicine, 2010, 63, 1437-1441.	3.0	23
137	Magnetic Resonance Imaging of Monocytes Labeled with Ultrasmall Superparamagnetic Particles of Iron Oxide Using Magnetoelectroporation in an Animal Model of Multiple Sclerosis. Molecular Imaging, 2010, 9, 7290.2010.00016.	1.4	24
138	Intravenous Route of Cell Delivery for Treatment of Neurological Disorders: A Meta-Analysis of Preclinical Results. Stem Cells and Development, 2010, 19, 5-16.	2.1	77
139	Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magnetic Resonance in Medicine, 2009, 61, 970-974.	3.0	33
140	Effect of MOG sensitization on somatosensory evoked potential in Lewis rats. Journal of the Neurological Sciences, 2009, 284, 81-89.	0.6	71
141	MR tracking of transplanted cells with "positive contrast―using manganese oxide nanoparticles. Magnetic Resonance in Medicine, 2008, 60, 1-7.	3.0	164
142	In vivo "hot spot―MR imaging of neural stem cells using fluorinated nanoparticles. Magnetic Resonance in Medicine, 2008, 60, 1506-1511.	3.0	143
143	Noninvasive Detection of Macrophage-Rich Atherosclerotic Plaque in Hyperlipidemic Rabbits Using "Positive Contrast―Magnetic Resonance Imaging. Journal of the American College of Cardiology, 2008, 52, 483-491.	2.8	111
144	Hypoxia Increases Breast Cancer Cell-Induced Lymphatic Endothelial Cell Migration. Neoplasia, 2008, 10, 380-IN5.	5.3	29

#	Article	IF	CITATIONS
145	Dual-Modality Monitoring of Targeted Intraarterial Delivery of Mesenchymal Stem Cells After Transient Ischemia. Stroke, 2008, 39, 1569-1574.	2.0	371
146	The Role of Noninvasive Cellular Imaging in Developing Cell-Based Therapies for Neurodegenerative Disorders. Neurodegenerative Diseases, 2007, 4, 306-313.	1.4	40
147	Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Research Bulletin, 2007, 74, 155-163.	3.0	31
148	MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR in Biomedicine, 2007, 20, 673-681.	2.8	17
149	Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: The case of the Shiverer dysmyelinated mouse brain. Magnetic Resonance in Medicine, 2007, 58, 261-269.	3.0	160
150	In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques. Journal of Magnetic Resonance Imaging, 2007, 26, 339-343.	3.4	19
151	Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biotechnology, 2007, 25, 217-219.	17.5	379
152	Magnetic resonance–guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nature Medicine, 2007, 13, 986-991.	30.7	220
153	Radiopaque Alginate Microcapsules for X-ray Visualization and Immunoprotection of Cellular Therapeutics. Molecular Pharmaceutics, 2006, 3, 531-538.	4.6	91
154	MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Experimental Neurology, 2006, 201, 49-59.	4.1	76
155	Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 89-94.	3.3	81
156	Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. International Journal of Cancer, 2006, 120, 978-984.	5.1	82
157	Human Umbilical Cord Blood Progenitors: The Potential of These Hematopoietic Cells to Become Neural. Stem Cells, 2005, 23, 1560-1570.	3.2	117
158	Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine, 2005, 54, 769-774.	3.0	212
159	Dynamic Imaging of Allogeneic Mesenchymal Stem Cells Trafficking to Myocardial Infarction. Circulation, 2005, 112, 1451-1461.	1.6	561
160	MR cellular imaging of magnetically labeled neural stem cells in a dysmyelinated mouse brain model. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S510-S510.	4.3	0
161	Genetic diversity among Lactococcus sp. and Leuconostoc sp. strains using PCR-RFLP of insertion sequences ISS1-type, IS904, and IS982. Polish Journal of Microbiology, 2005, 54, 183-9.	1.7	2
162	Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors?. Journal of Neuroscience Research, 2004, 76, 244-254.	2.9	46

#	Article	IF	CITATIONS
163	Green fluorescent protein bone marrow cells express hematopoietic and neural antigens in culture and migrate within the neonatal rat brain. Journal of Neuroscience Research, 2004, 76, 255-264.	2.9	15
164	Effect of phenoxyalkanoic acid herbicides on the fermentative production of l-lysine. Applied Microbiology and Biotechnology, 1984, 20, 129.	3.6	0