Antony Champion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4182086/publications.pdf

Version: 2024-02-01

50 papers

4,383 citations

236925 25 h-index 197818 49 g-index

53 all docs 53 docs citations

53 times ranked 5631 citing authors

#	Article	IF	Citations
1	PUCHI represses early meristem formation in developing lateral roots of <i>Arabidopsis thaliana</i> Journal of Experimental Botany, 2022, 73, 3496-3510.	4.8	11
2	Physiological and genetic control of transpiration efficiency in African rice, <i>Oryza glaberrima</i> Steud. Journal of Experimental Botany, 2022, 73, 5279-5293.	4.8	12
3	<scp>CROWN ROOTLESS1</scp> binds <scp>DNA</scp> with a relaxed specificity and activates <i>OsROP</i> and <i>OsbHLH044</i> genes involved in crown root formation in rice. Plant Journal, 2022, 111, 546-566.	5 . 7	7
4	Effect of Casuarina Plantations Inoculated with Arbuscular Mycorrhizal Fungi and Frankia on the Diversity of Herbaceous Vegetation in Saline Environments in Senegal. Diversity, 2020, 12, 293.	1.7	11
5	Advances in Frankia genome studies and molecular aspects of tolerance to environmental stresses. , 2020, , 381-389.		3
6	CRISPR/Cas9-Mediated Gene Editing of the Jasmonate Biosynthesis OsAOC Gene in Rice. Methods in Molecular Biology, 2020, 2085, 199-209.	0.9	14
7	Transcriptome profiling of laser-captured crown root primordia reveals new pathways activated during early stages of crown root formation in rice. PLoS ONE, 2020, 15, e0238736.	2.5	7
8	Establishment of Actinorhizal Symbiosis in Response to Ethylene, Salicylic Acid, and Jasmonate. Methods in Molecular Biology, 2020, 2085, 117-130.	0.9	1
9	Use of Fluorescent Reporters to Analyse Dynamic and Spatial Responses to Mechanical Wounding. Methods in Molecular Biology, 2020, 2085, 161-168.	0.9	O
10	Inference of the gene regulatory network acting downstream of <scp>CROWN ROOTLESSÂ</scp> 1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation, and root meristem specification and maintenance. Plant Journal, 2019, 100, 954-968.	5.7	13
11	Jasmonatesâ€"the Master Regulator of Rice Development, Adaptation and Defense. Plants, 2019, 8, 339.	3.5	37
12	Unraveling the Genetic Elements Involved in Shoot and Root Growth Regulation by Jasmonate in Rice Using a Genome-Wide Association Study. Rice, 2019, 12, 69.	4.0	31
13	Actinorhizal Signaling Molecules: Frankia Root Hair Deforming Factor Shares Properties With NIN Inducing Factor. Frontiers in Plant Science, 2018, 9, 1494.	3.6	46
14	Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. Annals of Forest Science, 2018, 75, 1.	2.0	17
15	GhERFâ€Nb3 regulates the accumulation of jasmonate and leads to enhanced cotton resistance to blight disease. Molecular Plant Pathology, 2017, 18, 825-836.	4.2	16
16	Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics, 2017, 18, 633.	2.8	46
17	Symbiotic Performance of Diverse Frankia Strains on Salt-Stressed Casuarina glauca and Casuarina equisetifolia Plants. Frontiers in Plant Science, 2016, 7, 1331.	3.6	43
18	Permanent Draft Genome Sequence for <i>Frankia</i> sp. Strain CeD, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of <i>Casuarina equistifolia</i> Grown in Senegal. Genome Announcements, 2016, 4, .	0.8	22

#	Article	IF	Citations
19	Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation. Symbiosis, 2016, 70, 17-29.	2.3	42
20	Permanent Draft Genome Sequence of <i>Frankia</i> sp <i>.</i> Strain Allo2, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of <i>Allocasuarina</i> Genome Announcements, 2016, 4, .	0.8	11
21	Symbiotic ability of diverse Frankia strains on Casuarina glauca plants in hydroponic conditions. Symbiosis, 2016, 70, 79-86.	2.3	11
22	Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLoS ONE, 2016, 11, e0167014.	2.5	28
23	The <i>Casuarina <scp>NIN </scp> </i> gene is transcriptionally activated throughout <i>Frankia </i> root infection as well as in response to bacterial diffusible signals. New Phytologist, 2015, 208, 887-903.	7.3	87
24	Inhibition of Auxin Signaling in <i>Frankia</i> Species-Infected Cells in <i>Casuarina glauca</i> Nodules Leads to Increased Nodulation. Plant Physiology, 2015, 167, 1149-1157.	4.8	25
25	A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications, 2015, 6, 6043.	12.8	130
26	Rhizobial root hair infection requires auxin signaling. Trends in Plant Science, 2015, 20, 332-334.	8.8	20
27	Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC Plant Biology, 2014, 14, 342.	3.6	34
28	Role of auxin during intercellular infection of Discaria trinervis by Frankia. Frontiers in Plant Science, 2014, 5, 399.	3.6	19
29	Identification of the Hevea brasiliensisAP2/ERF superfamily by RNA sequencing. BMC Genomics, 2013, 14, 30.	2.8	73
30	Establishment of Actinorhizal Symbioses. Soil Biology, 2013, , 89-101.	0.8	2
31	NaCl Effects on <i>In Vitro</i> Germination and Growth of Some Senegalese Cowpea (<i>Vigna) Tj ETQq1 1 0.784</i>	.314 rgBT	/Overlock
32	Heart of Endosymbioses: Transcriptomics Reveals a Conserved Genetic Program among Arbuscular Mycorrhizal, Actinorhizal and Legume-Rhizobial Symbioses. PLoS ONE, 2012, 7, e44742.	2.5	77
33	Colonization of Rice Leaf Blades by an African Strain of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Depends on a New TAL Effector That Induces the Rice Nodulin-3 <i>Os11N3</i> Gene. Molecular Plant-Microbe Interactions, 2011, 24, 1102-1113.	2.6	179
34	Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Molecular Biology, 2011, 75, 321-331.	3.9	233
35	Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biology, 2011, 11, 92.	3.6	77
36	Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism Â. Plant Physiology, 2011, 156, 564-584.	4.8	190

#	Article	IF	CITATIONS
37	Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and <i>Xanthomonas</i> . Molecular Plant Pathology, 2009, 10, 471-485.	4.2	44
38	Plants, MEN and SIN. Plant Physiology and Biochemistry, 2008, 46, 1-10.	5.8	14
39	Association of Lipoxygenase Response with Resistance of Various Cotton Genotypes to the Bacterial Blight Disease. Journal of Phytopathology, 2008, 156, 542-549.	1.0	14
40	The AP2/ERF Domain Transcription Factor ORA59 Integrates Jasmonic Acid and Ethylene Signals in Plant Defense Â. Plant Physiology, 2008, 147, 1347-1357.	4.8	609
41	The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum. Plant Physiology and Biochemistry, 2007, 45, 596-606.	5.8	44
42	AtSGP1, AtSGP2 and MAP4K $\hat{l}\pm$ are nucleolar plant proteins that can complement fission yeast mutants lacking a functional SIN pathway. Journal of Cell Science, 2004, 117, 4265-4275.	2.0	16
43	Zinc Finger Proteins Act as Transcriptional Repressors of Alkaloid Biosynthesis Genes in Catharanthus roseus. Journal of Biological Chemistry, 2004, 279, 52940-52948.	3.4	167
44	Arabidopsis kinome: after the casting. Functional and Integrative Genomics, 2004, 4, 163-87.	3.5	113
45	Reassessing the MAP3K and MAP4K relationships. Trends in Plant Science, 2004, 9, 123-129.	8.8	70
46	Expression Profiling of the Whole Arabidopsis Shaggy-Like Kinase Multigene Family by Real-Time Reverse Transcriptase-Polymerase Chain Reaction. Plant Physiology, 2002, 130, 577-590.	4.8	166
47	A model for the evolution and genesis of the pseudotetraploid Arabidopsis thaliana genome. Advances in Botanical Research, 2002, 38, 235-249.	1.1	3
48	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	8.8	1,080
49	The protein kinases AtMAP3Kε1 and BnMAP3Kε1 are functional homologues of S. pombe cdc7p and may be involved in cell division. Plant Journal, 2001, 26, 637-649.	5.7	35
50	A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO Journal, 1999, 18, 4455-4463.	7.8	406