
Alexander Yu Nikitin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4181428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gastric squamous-columnar junction contains a large pool of cancer-prone immature osteopontin responsive Lgr5â ^{~2} CD44+ cells. Nature Communications, 2020, 11, 84.	12.8	15
2	Cells expressing PAX8 are the main source of homeostatic regeneration of adult endometrial epithelium and give rise to serous endometrial carcinoma. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	24
3	Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Reports, 2020, 32, 108086.	6.4	16
4	WNT and inflammatory signaling distinguish human Fallopian tube epithelial cell populations. Scientific Reports, 2020, 10, 9837.	3.3	13
5	Membrane metalloendopeptidase suppresses prostate carcinogenesis by attenuating effects of gastrin-releasing peptide on stem/progenitor cells. Oncogenesis, 2020, 9, 38.	4.9	14
6	Stem Cell Pathology. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 71-92.	22.4	15
7	CAMKK2 Promotes Prostate Cancer Independently of AMPK via Increased Lipogenesis. Cancer Research, 2018, 78, 6747-6761.	0.9	49
8	Training mouse pathologists: 16th annual workshop on the pathology of mouse models of human disease. Lab Animal, 2018, 47, 38-40.	0.4	2
9	LEF1 is preferentially expressed in the tubal-peritoneal junctions and is a reliable marker of tubal intraepithelial lesions. Modern Pathology, 2017, 30, 1241-1250.	5.5	23
10	Transplantation Into the Mouse Ovarian Fat Pad. Journal of Visualized Experiments, 2016, , .	0.3	2
11	A Quest for Better Mouse Models of Breast and Ovarian Cancers. EBioMedicine, 2015, 2, 1268-1269.	6.1	4
12	Role of the stem cell niche in the pathogenesis of epithelial ovarian cancers. Molecular and Cellular Oncology, 2014, 1, e963435.	0.7	13
13	miR-34 Cooperates with p53 in Suppression of Prostate Cancer by Joint Regulation of Stem Cell Compartment. Cell Reports, 2014, 6, 1000-1007.	6.4	93
14	Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature, 2013, 495, 241-245.	27.8	307
15	Detection and Organ-Specific Ablation of Neuroendocrine Cells by Synaptophysin Locus-Based BAC Cassette in Transgenic Mice. PLoS ONE, 2013, 8, e60905.	2.5	10
16	Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. Journal of Controlled Release, 2012, 164, 183-186.	9.9	60
17	<i>MicroRNA-34b</i> and <i>MicroRNA-34c</i> Are Targets of p53 and Cooperate in Control of Cell Proliferation and Adhesion-Independent Growth. Cancer Research, 2007, 67, 8433-8438.	0.9	624
18	Prostate Cancer Associated with p53 and Rb Deficiency Arises from the Stem/Progenitor Cell–Enriched Proximal Region of Prostatic Ducts. Cancer Research, 2007, 67, 5683-5690.	0.9	89

#	Article	IF	CITATIONS
19	Mouse Models of Prostate Adenocarcinoma with the Capacity to Monitor Spontaneous Carcinogenesis by Bioluminescence or Fluorescence. Cancer Research, 2007, 67, 7525-7533.	0.9	76
20	Synergy of p53 and Rb Deficiency in a Conditional Mouse Model for Metastatic Prostate Cancer. Cancer Research, 2006, 66, 7889-7898.	0.9	276
21	Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Research, 2003, 63, 3459-63.	0.9	229