Boxuan Simen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4181265/publications.pdf

Version: 2024-02-01

32 papers

11,997 citations

201674 27 h-index 35 g-index

38 all docs

38 docs citations

38 times ranked

10406 citing authors

#	Article	IF	CITATIONS
1	N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015, 161, 1388-1399.	28.9	2,446
2	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	10.3	1,650
3	Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 2017, 18, 31-42.	37.0	1,592
4	YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 2017, 27, 315-328.	12.0	1,220
5	m 6 A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell, 2017, 31, 591-606.e6.	16.8	1,131
6	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	11.1	749
7	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	27.8	452
8	m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 2017, 542, 475-478.	27.8	437
9	Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host and Microbe, 2016, 20, 666-673.	11.0	318
10	5mC Oxidation by Tet2 Modulates Enhancer Activity and Timing of Transcriptome Reprogramming during Differentiation. Molecular Cell, 2014, 56, 286-297.	9.7	285
11	N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. ELife, 2016, 5, .	6.0	227
12	Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chemical Biology, 2016, 23, 74-85.	5.2	219
13	N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nature Microbiology, 2020, 5, 584-598.	13.3	169
14	A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Angewandte Chemie - International Edition, 2012, 51, 9652-9656.	13.8	129
15	The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nature Chemical Biology, 2014, 10, 21-28.	8.0	128
16	RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079.	7.1	105
17	TET Family Proteins: Oxidation Activity, Interacting Molecules, and Functions in Diseases. Chemical Reviews, 2015, 115, 2225-2239.	47.7	89
18	Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Research, 2015, 25, 386-389.	12.0	77

#	Article	IF	CITATIONS
19	Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biology, 2015, 16, 43.	8.8	76
20	Pseudouridine in a new era of RNA modifications. Cell Research, 2015, 25, 153-154.	12.0	64
21	Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nature Communications, 2019, 10, 4595.	12.8	64
22	A Highly Selective Fluorescent Probe for Visualization of Organic Hydroperoxides in Living Cells. Journal of the American Chemical Society, 2010, 132, 17065-17067.	13.7	54
23	Evolution of transcript modification by <i>N</i> ⁶ -methyladenosine in primates. Genome Research, 2017, 27, 385-392.	5.5	49
24	Our views of dynamic <i>N</i> ⁶ -methyladenosine RNA methylation. Rna, 2018, 24, 268-272.	3.5	41
25	Long genes linked to autism spectrum disorders harbor broad enhancer-like chromatin domains. Genome Research, 2018, 28, 933-942.	5.5	40
26	Quantifying mammalian genomic DNA hydroxymethylcytosine content using solid-state nanopores. Scientific Reports, 2016, 6, 29565.	3.3	32
27	"Gamete On―for m6A: YTHDF2 Exerts Essential Functions in Female Fertility. Molecular Cell, 2017, 67, 903-905.	9.7	23
28	DNA 5-Methylcytosine-Specific Amplification and Sequencing. Journal of the American Chemical Society, 2020, 142, 4539-4543.	13.7	13
29	Probing subcellular organic hydroperoxide formation via a genetically encoded ratiometric and reversible fluorescent indicator. Integrative Biology (United Kingdom), 2013, 5, 1485.	1.3	5
30	A highly sensitive and genetically encoded fluorescent reporter for ratiometric monitoring of quinones in living cells. Chemical Communications, 2013, 49, 8027.	4.1	3
31	The N6-Adenine Methyltransferase METTL14 Plays an Oncogenic Role in Acute Myeloid Leukemia. Blood, 2016, 128, 1536-1536.	1.4	1
32	Abstract 460: Base resolution epigenomic analysis reveals a role for Tet2 in modulating enhancer activity. , 2014, , .		0