Sueli Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4179272/publications.pdf

Version: 2024-02-01

174 papers 7,798 citations

41344 49 h-index 78 g-index

176 all docs

 $\begin{array}{c} 176 \\ \\ \text{docs citations} \end{array}$

176 times ranked

5458 citing authors

#	Article	IF	CITATIONS
1	Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 2008, 41, 604-610.	5.2	273
2	Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 2011, 44, 1276-1283.	6.2	229
3	Cold plasma processing of milk and dairy products. Trends in Food Science and Technology, 2018, 74, 56-68.	15.1	194
4	Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 2009, 90, 186-190.	5.2	193
5	Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 2007, 82, 261-267.	5.2	191
6	Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 2010, 28, 294-303.	3.1	187
7	Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science and Emerging Technologies, 2015, 32, 127-135.	5.6	165
8	Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 2008, 15, 1049-1054.	8.2	157
9	Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 2013, 139, 261-266.	8.2	156
10	Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. Journal of Food Engineering, 2007, 80, 869-872.	5.2	155
11	Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Research International, 2012, 48, 41-48.	6.2	155
12	Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrasonics Sonochemistry, 2008, 15, 95-100.	8.2	150
13	Drying of Exotic Tropical Fruits: A Comprehensive Review. Food and Bioprocess Technology, 2011, 4, 163-185.	4.7	150
14	Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT - Food Science and Technology, 2017, 84, 457-463.	5.2	148
15	High-Intensity Ultrasound Processing of Pineapple Juice. Food and Bioprocess Technology, 2013, 6, 997-1006.	4.7	141
16	Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Industrial Crops and Products, 2015, 69, 400-407.	5.2	141
17	Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Processing Technology, 2009, 90, 312-316.	7.2	129
18	Use of Ultrasound for Dehydration of Papayas. Food and Bioprocess Technology, 2008, 1, 339-345.	4.7	118

#	Article	IF	Citations
19	Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocolloids, 2012, 27, 324-331.	10.7	113
20	Application of Ultrasound and Ultrasound-Assisted Osmotic Dehydration in Drying of Fruits. Drying Technology, 2008, 26, 1509-1516.	3.1	111
21	Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chemistry, 2017, 218, 261-268.	8.2	103
22	Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 2006, 77, 188-193.	5.2	86
23	Cold Plasma Effects on Functional Compounds of Siriguela Juice. Food and Bioprocess Technology, 2019, 12, 110-121.	4.7	83
24	Guava-flavored whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chemistry, 2019, 279, 120-127.	8.2	80
25	Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment. Food and Bioprocess Technology, 2011, 4, 610-615.	4.7	79
26	Optimization of osmotic dehydration of papaya followed by air-drying. Food Research International, 2006, 39, 492-498.	6.2	77
27	Use of Ultrasound as Pretreatment for Dehydration of Melons. Drying Technology, 2007, 25, 1791-1796.	3.1	75
28	Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 2015, 8, 1503-1511.	4.7	74
29	Effect of Moisture on Trichoderma Conidia Production on Corn and Wheat Bran by Solid State Fermentation. Food and Bioprocess Technology, 2008, 1, 100-104.	4.7	70
30	Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. Journal of Food Engineering, 2017, 215, 72-77.	5.2	69
31	Processing chocolate milk drink by low-pressure cold plasma technology. Food Chemistry, 2019, 278, 276-283.	8.2	69
32	1H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice. Food Chemistry, 2016, 204, 102-107.	8.2	68
33	Effect of ultrasoundâ€assisted osmotic dehydration on cell structure of sapotas. Journal of the Science of Food and Agriculture, 2009, 89, 665-670.	3.5	67
34	Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds. Ultrasonics Sonochemistry, 2016, 31, 237-249.	8.2	66
35	Storage Stability and Acceptance of Probiotic Beverage from Cashew Apple Juice. Food and Bioprocess Technology, 2013, 6, 3155-3165.	4.7	65
36	Optimization of the Fermentation of Cantaloupe Juice by Lactobacillus casei NRRL B-442. Food and Bioprocess Technology, 2012, 5, 2819-2826.	4.7	63

#	Article	IF	Citations
37	Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal of Food Science and Technology, 2018, 55, 2095-2102.	2.8	61
38	Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Research International, 2020, 131, 109044.	6.2	61
39	Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Research International, 2017, 102, 282-290.	6.2	60
40	Fermentation of cashew apple juice to produce high added value products. World Journal of Microbiology and Biotechnology, 2007, 23, 1409-1415.	3.6	58
41	Effect of drying technique and feed flow rate on bacterial survival and physicochemical properties of a non-dairy fermented probiotic juice powder. Journal of Food Engineering, 2016, 189, 45-54.	5.2	56
42	Optimization of osmotic dehydration of melons followed by air-drying. International Journal of Food Science and Technology, 2006, 41, 674-680.	2.7	55
43	Effect of ultrasonic and osmotic dehydration pre-treatments on the colour of freeze dried strawberries. Journal of Food Science and Technology, 2014, 51, 2222-2227.	2.8	55
44	Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 2016, 34, 986-996.	3.1	54
45	Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 2017, 35, 92-102.	8.2	54
46	Prebiotic in fruit juice: processing challenges, advances, and perspectives. Current Opinion in Food Science, 2018, 22, 55-61.	8.0	54
47	Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Research International, 2020, 136, 109617.	6.2	54
48	Simultaneous determination of aging markers in sugar cane spirits. Food Chemistry, 2006, 98, 569-574.	8.2	52
49	Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1 H q NMR and GC–MS coupled to chemometrics. Food Chemistry, 2018, 265, 23-31.	8.2	52
50	Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Research International, 2019, 115, 16-22.	6.2	52
51	Impact of fermentation conditions on the quality and sensory properties of a probiotic cupuassu (Theobroma grandiflorum) beverage. Food Research International, 2017, 100, 603-611.	6.2	51
52	Stability and Quality Parameters of Probiotic Cantaloupe Melon Juice Produced with Sonicated Juice. Food and Bioprocess Technology, 2013, 6, 2860-2869.	4.7	50
53	Dehydration of melons in a ternary system followed by air-drying. Journal of Food Engineering, 2007, 80, 678-687.	5.2	49
54	Effect of Immersion Time in Osmosis and Ultrasound on Papaya Cell Structure during Dehydration. Drying Technology, 2009, 27, 220-225.	3.1	49

#	Article	IF	Citations
55	Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure. LWT - Food Science and Technology, 2019, 102, 324-329.	5.2	49
56	Prebiotic effect of fermented cashew apple (Anacardium occidentale L) juice. LWT - Food Science and Technology, 2010, 43, 141-145.	5.2	47
57	Cashew Apple Juice as Substrate for Lactic Acid Production. Food and Bioprocess Technology, 2012, 5, 947-953.	4.7	47
58	Ozone and plasma processing effect on green coconut water. Food Research International, 2020, 131, 109000.	6.2	45
59	Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice. Food Research International, 2017, 99, 461-468.	6.2	44
60	Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT - Food Science and Technology, 2018, 89, 58-64.	5.2	44
61	Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT - Food Science and Technology, 2019, 99, 371-378.	5.2	44
62	Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess and Biosystems Engineering, 2009, 32, 493-499.	3.4	43
63	Characterization of the Industrial Residues of Seven Fruits and Prospection of Their Potential Application as Food Supplements. Journal of Chemistry, 2015, 2015, 1-8.	1.9	43
64	Optimization of osmotic dehydration of tomatoes in a ternary system followed by air-drying. Journal of Food Engineering, 2007, 83, 501-509.	5.2	42
65	The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiological Research, 2017, 204, 40-47.	5.3	42
66	An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice. Innovative Food Science and Emerging Technologies, 2019, 53, 63-69.	5.6	41
67	Enzyme synthesis of oligosaccharides using cashew apple juice as substrate. Bioresource Technology, 2009, 100, 5574-5580.	9.6	40
68	Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Process Biochemistry, 2011, 46, 1831-1839.	3.7	39
69	Guava flavored whey-beverage processed by cold plasma: Physical characteristics, thermal behavior and microstructure. Food Research International, 2019, 119, 564-570.	6.2	39
70	DEVELOPMENT OF A BLENDED NONALCOHOLIC BEVERAGE COMPOSED OF COCONUT WATER AND CASHEW APPLE JUICE CONTAINING CAFFEINE. Journal of Food Quality, 2007, 30, 664-681.	2.6	38
71	Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: kinetics and mathematical modeling. Journal of Food Science and Technology, 2020, 57, 2321-2328.	2.8	37
72	Cold Plasma Processing on Fruits and Fruit Juices: A Review on the Effects of Plasma on Nutritional Quality. Processes, 2021, 9, 2098.	2.8	35

#	Article	IF	Citations
73	Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrasonics Sonochemistry, 2020, 63, 104911.	8.2	33
74	Improvement of the Bioavailability of Amazonian Juices Rich in Bioactive Compounds Using Glow Plasma Technique. Food and Bioprocess Technology, 2020, 13, 670-679.	4.7	33
75	Enzymatic Synthesis of Prebiotic Oligosaccharides. Applied Biochemistry and Biotechnology, 2006, 133, 31-40.	2.9	31
76	Inactivation of Polyphenoloxidase and Peroxidase in Apple Cubes and in Apple Juice Subjected to High Intensity Power Ultrasound Processing. Journal of Food Processing and Preservation, 2015, 39, 2081-2087.	2.0	31
77	Cold plasma processing effect on cashew nuts composition and allergenicity. Food Research International, 2019, 125, 108621.	6.2	31
78	Thermal and non-thermal processing effect on açai juice composition. Food Research International, 2020, 136, 109506.	6.2	31
79	The effect of maltose on dextran yield and molecular weight distribution. Bioprocess and Biosystems Engineering, 2005, 28, 9-14.	3.4	30
80	Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. International Journal of Biological Macromolecules, 2021, 191, 79-91.	7.5	30
81	Spouted bed as an efficient processing for probiotic orange juice drying. Food Research International, 2017, 101, 54-60.	6.2	29
82	Effect of pH and Temperature on Enzyme Activity of Chitosanase Produced Under Solid Stated Fermentation by Trichoderma spp Indian Journal of Microbiology, 2012, 52, 60-65.	2.7	28
83	Effect of processing on physicochemical composition, bioactive compounds and enzymatic activity of yellow mombin (Spondias mombin L.) tropical juice. Journal of Food Science and Technology, 2015, 52, 1182-1187.	2.8	28
84	Sonication Effect on Bioactive Compounds of Cashew Apple Bagasse. Food and Bioprocess Technology, 2017, 10, 1854-1864.	4.7	28
85	Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods, 2018, 41, 48-54.	3.4	27
86	Use of ultrasound for dehydration of mangoes (Mangifera indica L.): kinetic modeling of ultrasound-assisted osmotic dehydration and convective air-drying. Journal of Food Science and Technology, 2019, 56, 1793-1800.	2.8	27
87	Dextransucrase Stability in Cashew Apple Juice. Food and Bioprocess Technology, 2010, 3, 105-110.	4.7	26
88	Chitosanase production by Paenibacillus ehimensis and its application for chitosan hydrolysis. Brazilian Archives of Biology and Technology, 2010, 53, 1461-1468.	0.5	26
89	Optimization of Chitosanase Production by Trichoderma koningii sp. Under Solid-State Fermentation. Food and Bioprocess Technology, 2012, 5, 1564-1572.	4.7	26
90	Cashew juice containing prebiotic oligosaccharides. Journal of Food Science and Technology, 2014, 51, 2078-2084.	2.8	26

#	Article	IF	Citations
91	Production and spouted bed drying of acerola juice containing oligosaccharides. Food and Bioproducts Processing, 2015, 94, 565-571.	3.6	26
92	Modulation of aroma and flavor using glow discharge plasma technology. Innovative Food Science and Emerging Technologies, 2020, 62, 102363.	5.6	26
93	MODELING AND OPTIMIZATION OF OSMOTIC DEHYDRATION OF BANANA FOLLOWED BY AIR DRYING. Journal of Food Process Engineering, 2006, 29, 400-413.	2.9	25
94	Dehydration of Sapota (<i>Achras sapota</i> L.) Using Ultrasound as Pretreatment. Drying Technology, 2008, 26, 1232-1237.	3.1	25
95	Effect of high power low frequency ultrasound processing on the stability of lycopene. Ultrasonics Sonochemistry, 2015, 27, 586-591.	8.2	25
96	Evaluation of plasma, highâ€pressure and ultrasound processing on the stability of fructooligosaccharides. International Journal of Food Science and Technology, 2016, 51, 2034-2040.	2.7	25
97	Non-thermal Technologies as Alternative Methods for Saccharomyces cerevisiae Inactivation in Liquid Media: a Review. Food and Bioprocess Technology, 2018, 11, 487-510.	4.7	25
98	Effect of cold plasma on aÃSai pulp: Enzymatic activity, color and bioaccessibility of phenolic compounds. LWT - Food Science and Technology, 2021, 149, 111883.	5.2	25
99	Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds. Food Research International, 2021, 147, 110462.	6.2	25
100	Turning Fruit Juice Into Probiotic Beverages. , 2018, , 279-287.		24
101	Evaluation of nutritional and chemical composition of yacon syrup using 1H NMR and UPLC-ESI-Q-TOF-MSE. Food Chemistry, 2018, 245, 1239-1247.	8.2	24
102	Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition. Bioprocess and Biosystems Engineering, 2007, 30, 207-215.	3.4	23
103	Modulation of aroma and flavor using dielectric barrier discharge plasma technology in a juice rich in terpenes and sesquiterpenes. LWT - Food Science and Technology, 2020, 130, 109644.	5.2	23
104	Storage stability of a stimulant coconut water–acerola fruit juice beverage. International Journal of Food Science and Technology, 2009, 44, 1445-1451.	2.7	22
105	Are consumers willing to pay for a product processed by emerging technologies? The case of chocolate milk drink processed by cold plasma. LWT - Food Science and Technology, 2021, 138, 110772.	5.2	22
106	Optimization of the Production of Methyl Esters from Soybean Waste Oil Applying Ultrasound Technology. Energy & Samp; Fuels, 2009, 23, 4116-4120.	5.1	21
107	Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innovative Food Science and Emerging Technologies, 2010, 11 , 225-230.	5.6	21
108	Efficient Production of Prebiotic Gluco-oligosaccharides in Orange Juice Using Immobilized and Co-immobilized Dextransucrase. Applied Biochemistry and Biotechnology, 2017, 183, 1265-1281.	2.9	20

#	Article	IF	CITATIONS
109	An integrated analytical approach based on NMR, LC–MS and GC–MS to evaluate thermal and non-thermal processing of cashew apple juice. Food Chemistry, 2020, 309, 125761.	8.2	20
110	Permeabilidade ao ar em Latossolo Vermelho sob diferentes sistemas de manejo. Revista Brasileira De Ciencia Do Solo, 2011, 35, 105-114.	1.3	20
111	Optimizing panose production by modeling and simulation using factorial design and surface response analysis. Journal of Food Engineering, 2006, 75, 433-440.	5.2	19
112	STORAGE STABILITY OF A STIMULANT COCONUT WATER-CASHEW APPLE JUICE BEVERAGE. Journal of Food Processing and Preservation, 2007, 31, 178-189.	2.0	19
113	Co-immobilization of dextransucrase and dextranase in epoxy-agarose-tailoring oligosaccharides synthesis. Process Biochemistry, 2019, 78, 71-81.	3.7	19
114	Production of low calorie Malay apples by dual stage sugar substitution with Stevia-based sweetener. Food and Bioproducts Processing, 2012, 90, 713-718.	3.6	18
115	Effects of cold plasma processing in food components. , 2020, , 253-268.		18
116	Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Research International, 2021, 147, 110479.	6.2	18
117	Ultrasound as Pre-Treatment for Drying of Genipap (Genipa americana L.). International Journal of Food Engineering, 2012, 8, .	1.5	17
118	Spray-Drying of Probiotic Cashew Apple Juice. Food and Bioprocess Technology, 2014, 7, 2492.	4.7	17
119	Improvements on the Stability and Vitamin Content of Acerola Juice Obtained by Ultrasonic Processing. Foods, 2018, 7, 68.	4.3	16
120	Modeling and Optimization of Lactic Acid Production using Cashew Apple Juice as Substrate. Food and Bioprocess Technology, 2012, 5, 3151-3158.	4.7	15
121	Influence of Different Non-thermal Processing on Guava, Orange, and Tangerine Juices and the Food Matrix Effects. Food and Bioprocess Technology, 2021, 14, 1662-1672.	4.7	15
122	Influence of Ultrasound-Assisted Air-Drying and Conventional Air-Drying on the Activity of Apple Enzymes. Journal of Food Processing and Preservation, 2017, 41, e12832.	2.0	14
123	Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock. Applied Biochemistry and Biotechnology, 2021, 193, 589-605.	2.9	14
124	Image analysis of osmotically dehydrated fruits: melons dehydration in a ternary system. European Food Research and Technology, 2007, 225, 685-691.	3.3	13
125	Evaluation of Enzymatic Reactors for Large-Scale Panose Production. Applied Biochemistry and Biotechnology, 2007, 142, 95-104.	2.9	13
126	Comparison of Aspergillus niger spore production on Potato Dextrose Agar (PDA) and crushed corncob medium. Journal of General and Applied Microbiology, 2010, 56, 399-402.	0.7	13

#	Article	IF	CITATIONS
127	Single-stage ultrasound-assisted process to extract and convert α-solanine and α-chaconine from potato peels into β-solanine and β-chaconine. Biomass Conversion and Biorefinery, 2018, 8, 689-697.	4.6	13
128	Drying of mangoes (Mangifera indica L.) applying pulsed UV light as pretreatment. Food and Bioproducts Processing, 2019, 114, 95-102.	3.6	13
129	Kinetics of ultrasound pretreated apple cubes dried in fluidized bed dryer. Drying Technology, 2020, 38, 1367-1377.	3.1	13
130	Substitution of yeast extract by ammonium sulfate for mannitol production in cashew apple juice. Biocatalysis and Agricultural Biotechnology, 2013, 2, 69-75.	3.1	12
131	Dehydration of Prebiotic Fruit Drinks by Spray Drying: Operating Conditions and Powder Characterization. Food and Bioprocess Technology, 2014, 7, 2942-2950.	4.7	12
132	Development of low caloric prebiotic fruit juices by dexransucrase acceptor reaction. Journal of Food Science and Technology, 2015, 52, 7272-7280.	2.8	12
133	NMR evaluation of apple cubes and apple juice composition subjected to two cold plasma technologies. LWT - Food Science and Technology, 2021, 150, 112062.	5.2	12
134	Developing an educational software for heat exchangers and heat exchanger networks projects. Computers and Chemical Engineering, 2000, 24, 1247-1251.	3.8	11
135	Cashew apple juice containing gluco-oligosaccharides, dextran, and tagatose promotes probiotic microbial growth. Food Bioscience, 2021, 42, 101080.	4.4	11
136	Determinação de marcadores de envelhecimento em cachaças. Food Science and Technology, 2006, 26, 145-149.	1.7	11
137	Optimization of panose production by enzymatic synthesis using neural networks. Process Biochemistry, 2006, 41, 1090-1096.	3.7	10
138	Produção de ácido lático e dextrana utilizando suco de caju como substrato. Food Science and Technology, 2007, 27, 254-258.	1.7	10
139	Degradation kinetics of vitamin E during ultrasound application and the adjustment in avocado purée by tocopherol acetate addition. LWT - Food Science and Technology, 2016, 69, 342-347.	5.2	10
140	Optimization of enzymatic treatment to produce yacon juice clarified by microfiltration with high levels of chlorogenic acid and fructooligosaccharides. Journal of Food Processing and Preservation, 2018, 42, e13641.	2.0	10
141	Synbiotic açaÃ-juice (<i>Euterpe oleracea</i>) containing sucralose as noncaloric sweetener: Processing optimization, bioactive compounds, and acceptance during storage. Journal of Food Science, 2021, 86, 730-739.	3.1	10
142	Alterações quÃmicas e fÃsico-quÃmicas no processamento de suco de caju (Anacardium occidentale L.). Food Science and Technology, 2007, 27, 878-882.	1.7	9
143	Extraction Processes Assisted by Ultrasound. , 2017, , 351-368.		9
144	Cupuassu— Theobroma grandiflorum. , 2018, , 159-162.		9

#	Article	IF	CITATIONS
145	Integrated strategy for purification of esterase from Aureobasidium pullulans. Separation and Purification Technology, 2019, 209, 409-418.	7.9	9
146	Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina). Food and Bioprocess Technology, 2021, 14, 702-716.	4.7	9
147	Ultrasound and Ozone Processing of Cashew Apple Juice: Effects of Single and Combined Processing on the Juice Quality and Microbial Stability. Processes, 2021, 9, 2243.	2.8	9
148	Powder lemon juice containing oligosaccharides obtained by dextransucrase acceptor reaction synthesis and dehydrated in sprouted bed. Journal of Food Science and Technology, 2015, 52, 5961-5967.	2.8	8
149	Effects of cold plasma on avocado pulp (<i>Perseaand bioactive compounds. Journal of Food Processing and Preservation, 2021, 45, e15179.</i>	2.0	8
150	Effect of probiotic Minas Frescal cheese on the volatile compound and metabolic profiles assessed by nuclear magnetic resonance spectroscopy and chemometric tools. Journal of Dairy Science, 2021, 104, 5133-5140.	3.4	8
151	Protective effect of inulin on thermally treated acerola juice: in vitro bioaccessibility of bioactive compounds. Food Bioscience, 2021, 41, 101018.	4.4	8
152	Aceitação e perfil sensorial das cachaças produzidas com Kefir e Saccharomyces cerevisae. Food Science and Technology, 2009, 29, 518-522.	1.7	7
153	Stability Study of Crude Dextransucrase from Leuconostoc citreum NRRL B-742. Indian Journal of Microbiology, 2011, 51, 164-170.	2.7	7
154	Different strategies to co-immobilize dextransucrase and dextranase onto agarose based supports: Operational stability study. International Journal of Biological Macromolecules, 2020, 156, 411-419.	7.5	7
155	Metabolic profiling of probiotic low-sodium prato cheese with flavour enhancers: Usefulness of NMR spectroscopy and chemometric tools. International Dairy Journal, 2021, 119, 104992.	3.0	7
156	In vitro viability of L. Casei B-442 and fructooligosaccharides integrity in Amazonian sapota-do-solimões functional juice. Food Research International, 2022, 154, 111036.	6.2	7
157	Comparative study of two cold plasma technologies on apple juice antioxidant capacity, phenolic contents, and enzymatic activity. Journal of Food Processing and Preservation, 2022, 46, .	2.0	7
158	Solid-state production of cellulase by Melanoporia sp. CCT 7736: a new strain isolated from coconut shell (Cocos nucifera L.). Bioresources and Bioprocessing, 2016, 3, .	4.2	6
159	Probiotic dried apple snacks: Development of probiotic coating and shelfâ€ife studies. Journal of Food Processing and Preservation, 2020, 44, e14974.	2.0	6
160	Effect of Glow and Dielectric Barrier Discharges Plasma on Volatile and Non-volatile Chemical Profiling of Camu-Camu Juice. Food and Bioprocess Technology, 2021, 14, 1275-1286.	4.7	6
161	Phenolic compounds in Imburana (Amburana cearensis) powder extracts. European Food Research and Technology, 2005, 221, 739-745.	3.3	5
162	Caju— Anacardium occidentale. , 2018, , 85-89.		5

#	Article	IF	CITATIONS
163	Esterase production by Aureobasidium pullulans URM 7059 in stirred tank and airlift bioreactors using residual biodiesel glycerol as substrate. Biochemical Engineering Journal, 2021, 168, 107954.	3.6	5
164	NMR Spectroscopy and Chemometrics to Evaluate the Effect of Different Non-Thermal Plasma Processing on Sapota-do-Solimões (Quararibea cordata Vischer) Juice Quality and Composition. Food and Bioprocess Technology, 2022, 15, 875-890.	4.7	5
165	Highâ€intensity ultrasound processed acerola juice containing oligosaccharides and dextran promotes ⟨i>Lacticaseibacillus casei⟨ i> NRRL Bâ€442 growth. International Journal of Food Science and Technology, 2022, 57, 5186-5194.	2.7	5
166	Fermentation and Cashew Apple Juice. , 2012, , 237-248.		4
167	Comportamento higrosc \tilde{A}^3 pico da polpa de graviola em p \tilde{A}^3 obtida por secagem em spray dryer. Brazilian Journal of Food Technology, 2018, 21, .	0.8	4
168	Effect of glow discharge plasma technology on the phenolic content and antioxidant capacity of four tropical juices with different phenolic composition. Journal of Food Processing and Preservation, 2022, 46, e16110.	2.0	4
169	Educational software for gas-solid and liquid-solid separation equipment. Computer Applications in Engineering Education, 2003, 11, 226-232.	3.4	3
170	Ultrasound Applications in Fruit Processing. Contemporary Food Engineering, 2012, , 51-86.	0.2	2
171	Mathematical Modeling for Isotherms of Mango Pulp Powder, Obtained by Atomization. Journal of Encapsulation and Adsorption Sciences, 2014, 04, 8-14.	0.3	2
172	Avaliação da metodologia microbiológica para determinação de 5-metiltetrahidrofolato em suco de caju (Anacardium occidentale L.). Food Science and Technology, 2010, 30, 635-640.	1.7	1
173	Flowability of sprayâ€dried sapodilla pulp powder. Journal of Food Process Engineering, 2022, 45, .	2.9	1
174	Assessing the use of arabic gum as a drying adjuvant for powdered shrimp obtained using a spray dryer. Ciencia Animal Brasileira, 0, 21, .	0.3	0