Marty R Schmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4177517/publications.pdf Version: 2024-02-01

MADTY P SCHMED

#	Article	IF	CITATIONS
1	Microbial feedbacks on soil organic matter dynamics underlying the legacy effect of diversified cropping systems. Soil Biology and Biochemistry, 2022, 167, 108584.	8.8	14
2	Long term agroecosystem research experimental watershed network. Hydrological Processes, 2022, 36, .	2.6	1
3	Late-seeded cover crops in a semiarid environment: overyielding, dominance and subsequent crop yield. Renewable Agriculture and Food Systems, 2021, 36, 587-598.	1.8	4
4	Effects of residue removal and tillage on greenhouse gas emissions in continuous corn systems as simulated with RZWQM2. Journal of Environmental Management, 2021, 285, 112097.	7.8	11
5	Soil Greenhouse Gas Responses to Biomass Removal in the Annual and Perennial Cropping Phases of an Integrated Crop Livestock System. Agronomy, 2021, 11, 1416.	3.0	1
6	Longâ€ŧerm rotation diversity and nitrogen effects on soil organic carbon and nitrogenÂstocks. , 2020, 3, e20055.		14
7	Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth, 2020, 2, 284-293.	6.8	219
8	Irrigation, carbon amelioration, nitrogen, and stover removal effects on continuous corn. Agronomy Journal, 2020, 112, 2506-2518.	1.8	4
9	Facilitating Crop–Livestock Reintegration in the Northern Great Plains. Agronomy Journal, 2019, 111, 2141-2156.	1.8	31
10	Does Noâ€Tillage Mitigate Stover Removal in Irrigated Continuous Corn? A Multiâ€Location Assessment. Soil Science Society of America Journal, 2019, 83, 733-742.	2.2	8
11	Sugarcane Straw Blanket Management Effects on Plant Growth, Development, and Yield in Southeastern Brazil. Crop Science, 2019, 59, 1732-1744.	1.8	2
12	Assessing the Value of Grazed Corn Residue for Crop and Cattle Producers. Agricultural and Environmental Letters, 2019, 4, 180066.	1.2	14
13	Field-to-farm gate greenhouse gas emissions from corn stover production in the Midwestern U.S Journal of Cleaner Production, 2019, 226, 1116-1127.	9.3	11
14	Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands. Science Advances, 2019, 5, eaav9318.	10.3	20
15	Unraveling Crop Residue Harvest Effects on Soil Organic Carbon. Agronomy Journal, 2019, 111, 93-98.	1.8	11
16	Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations. GCB Bioenergy, 2017, 9, 508-524.	5.6	48
17	Longâ€ŧerm noâ€ŧill and stover retention each decrease the global warming potential of irrigated continuous corn. Global Change Biology, 2017, 23, 2848-2862.	9.5	45
18	Perennial warmâ€season grasses for producing biofuel and enhancing soil properties: an alternative to corn residue removal. GCB Bioenergy, 2017, 9, 1510-1521.	5.6	16

MARTY R SCHMER

#	Article	IF	CITATIONS
19	Seasonal belowâ€ground metabolism in switchgrass. Plant Journal, 2017, 92, 1059-1075.	5.7	13
20	Corn Residue Use by Livestock in the United States. Agricultural and Environmental Letters, 2017, 2, 160043.	1.2	35
21	Residue Harvest Effects on Irrigated, Noâ€Till Corn Yield and Nitrogen Response. Agronomy Journal, 2016, 108, 384-390.	1.8	14
22	Crop Rotation Affects Corn, Grain Sorghum, and Soybean Yields and Nitrogen Recovery. Agronomy Journal, 2016, 108, 1592-1602.	1.8	38
23	Economic Return versus Crop Water Productivity of Maize for Various Nitrogen Rates under Full Irrigation, Limited Irrigation, and Rainfed Settings in South Central Nebraska. Journal of Irrigation and Drainage Engineering - ASCE, 2016, 142, .	1.0	24
24	CQESTR Simulated Changes in Soil Organic Carbon under Residue Management Practices in Continuous Corn Systems. Bioenergy Research, 2016, 9, 23-30.	3.9	12
25	Longâ€Term Corn and Soybean Response to Crop Rotation and Tillage. Agronomy Journal, 2015, 107, 2241-2252.	1.8	44
26	Twelve Years of Stover Removal Increases Soil Erosion Potential without Impacting Yield. Soil Science Society of America Journal, 2015, 79, 1169-1178.	2.2	54
27	Sub-surface soil carbon changes affects biofuel greenhouse gas emissions. Biomass and Bioenergy, 2015, 81, 31-34.	5.7	17
28	Can Cover Crop and Manure Maintain Soil Properties After Stover Removal from Irrigated Noâ€Till Corn?. Soil Science Society of America Journal, 2014, 78, 1368-1377.	2.2	55
29	Soil Greenhouse Gas Emissions in Response to Corn Stover Removal and Tillage Management Across the US Corn Belt. Bioenergy Research, 2014, 7, 517-527.	3.9	60
30	Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland. PLoS ONE, 2014, 9, e89501.	2.5	53
31	Switchgrass Harvest and Storage. Green Energy and Technology, 2012, , 113-127.	0.6	24