Randy J Seeley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4177489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary induction of obesity and insulin resistance is associated with changes in Fgf21 DNA methylation in liver of mice. Journal of Nutritional Biochemistry, 2022, 100, 108907.	1.9	9
2	OUP accepted manuscript. American Journal of Clinical Nutrition, 2022, 115, 591-592.	2.2	2
3	Gut HIF2α signaling is increased after VSC, and gut activation of HIF2α decreases weight, improves glucose, and increases GLP-1 secretion. Cell Reports, 2022, 38, 110270.	2.9	8
4	LPS induces rapid increase in GDF15 levels in mice, rats, and humans but is not required for anorexia in mice. American Journal of Physiology - Renal Physiology, 2022, 322, G247-G255.	1.6	8
5	Vertical sleeve gastrectomy increases duodenal Lactobacillus spp. richness associated with the activation of intestinal HIF21± signaling and metabolic benefits. Molecular Metabolism, 2022, 57, 101432.	3.0	12
6	Vertical sleeve gastrectomy induces enteroendocrine cell differentiation of intestinal stem cells through bile acid signaling. JCI Insight, 2022, 7, .	2.3	4
7	Glucose-sensing glucagon-like peptide-1 receptor neurons in the dorsomedial hypothalamus regulate glucose metabolism. Science Advances, 2022, 8, .	4.7	21
8	Intestinal extracellular vesicles are altered by vertical sleeve gastrectomy. American Journal of Physiology - Renal Physiology, 2021, 320, G153-G165.	1.6	3
9	Improved in vivo imaging method for individual islets across the mouse pancreas reveals a heterogeneous insulin secretion response to glucose. Scientific Reports, 2021, 11, 603.	1.6	6
10	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	5.8	69
11	GFRAL-expressing neurons suppress food intake via aversive pathways. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48
12	Physiology of Energy Intake in the Weightâ€Reduced State. Obesity, 2021, 29, S25-S30.	1.5	5
13	Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nature Metabolism, 2021, 3, 443-445.	5.1	43
14	Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity. Scientific Reports, 2021, 11, 9477.	1.6	5
15	The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Reports, 2021, 35, 109163.	2.9	50
16	A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nature Communications, 2021, 12, 2911.	5.8	17
17	Anorexia and fat aversion induced by vertical sleeve gastrectomy is attenuated in neurotensin receptor 1 deficient mice. Endocrinology, 2021, 162, .	1.4	5
18	Growth differentiation factor 15 neutralization does not impact anorexia or survival in lipopolysaccharide-induced inflammation. IScience, 2021, 24, 102554.	1.9	11

#	Article	IF	CITATIONS
19	Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nature Communications, 2021, 12, 4768.	5.8	19
20	Restructuring of the male mice peripheral circadian network after bariatric surgery. Journal of Endocrinology, 2021, 250, 67-79.	1.2	4
21	Vascular reactivity contributes to adipose tissue remodeling in obesity. Journal of Endocrinology, 2021, 251, 195-206.	1.2	5
22	Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight, 2021, 6, .	2.3	23
23	High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nature Communications, 2021, 12, 6951.	5.8	13
24	CNS GNPDA2 Does Not Control Appetite, but Regulates Glucose Homeostasis. Frontiers in Nutrition, 2021, 8, 787470.	1.6	3
25	The Unconventional Role for Gastric Volume in the Response to Bariatric Surgery for Both Weight Loss and Glucose Lowering. Annals of Surgery, 2020, 271, 1102-1109.	2.1	13
26	Nutrient and hormone composition of milk is altered in rodent dams post-bariatric surgery. Journal of Developmental Origins of Health and Disease, 2020, 11, 71-77.	0.7	4
27	A rodent model of partial intestinal diversion: a novel metabolic operation. Surgery for Obesity and Related Diseases, 2020, 16, 270-281.	1.0	2
28	Rapid hepatic metabolism blunts the endocrine action of portally infused GLP-1 in male rats. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E189-E197.	1.8	10
29	Continuous glucose monitoring reveals glycemic variability and hypoglycemia after vertical sleeve gastrectomy in rats. Molecular Metabolism, 2020, 32, 148-159.	3.0	12
30	Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E62-E71.	1.8	13
31	The Role of Elevated Branched-Chain Amino Acids in the Effects of Vertical Sleeve Gastrectomy to Reduce Weight and Improve Glucose Regulation. Cell Reports, 2020, 33, 108239.	2.9	13
32	Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature, 2020, 585, 420-425.	13.7	78
33	Assessment of the role of FGF15 in mediating the metabolic outcomes of murine vertical sleeve gastrectomy. American Journal of Physiology - Renal Physiology, 2020, 319, G669-G684.	1.6	9
34	Leveraging the Gut to Treat Metabolic Disease. Cell Metabolism, 2020, 31, 679-698.	7.2	53
35	Joint international consensus statement for ending stigma of obesity. Nature Medicine, 2020, 26, 485-497.	15.2	468
36	Some Caveats when Interpreting Surgical Mouse Models of Vertical Sleeve Gastrectomy. Obesity Surgery, 2020, 30, 1582-1585.	1.1	1

#	Article	IF	CITATIONS
37	Adaptive Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing. Cell Reports, 2020, 30, 672-686.e8.	2.9	53
38	Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metabolism, 2020, 31, 301-312.e5.	7.2	68
39	Leptin receptor–expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight, 2020, 5, .	2.3	44
40	Expanding industry partnerships through an accelerated business engagement program. Surgery, 2019, 166, 143-146.	1.0	1
41	The role of GIP and pancreatic GLP-1 in the glucoregulatory effect of DPP-4 inhibition in mice. Diabetologia, 2019, 62, 1928-1937.	2.9	14
42	Kilohertz Frequency Stimulation of Renal Nerves for Modulating Blood Glucose Concentration in Diabetic Rats. , 2019, , .		4
43	The Iminosugar AMP-DNM Improves Satiety and Activates Brown Adipose Tissue Through GLP1. Diabetes, 2019, 68, 2223-2234.	0.3	5
44	Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30, 72-130.	3.0	850
45	GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice. Molecular Metabolism, 2019, 21, 13-21.	3.0	63
46	Distinct Neural Sites of GLP-1R Expression Mediate Physiological versus Pharmacological Control of Incretin Action. Cell Reports, 2019, 27, 3371-3384.e3.	2.9	64
47	Reg3 Proteins as Gut Hormones?. Endocrinology, 2019, 160, 1506-1514.	1.4	61
48	Vertical sleeve gastrectomy improves ventilatory drive through a leptin-dependent mechanism. JCI Insight, 2019, 4, .	2.3	11
49	Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy. JCI Insight, 2019, 4, .	2.3	23
50	G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. Journal of Clinical Investigation, 2019, 129, 2404-2416.	3.9	32
51	Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs. ENeuro, 2019, 6, ENEURO.0443-18.2019.	0.9	34
52	Signalling from the periphery to the brain that regulates energy homeostasis. Nature Reviews Neuroscience, 2018, 19, 185-196.	4.9	124
53	How does â€~metabolic surgery' work its magic? New evidence for gut microbiota. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 81-86.	1.2	12
54	Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21. Endocrinology, 2018, 159, 400-413.	1.4	28

#	Article	IF	CITATIONS
55	Metabolic comparison of one-anastomosis gastric bypass, single-anastomosis duodenal-switch, Roux-en-Y gastric bypass, and vertical sleeve gastrectomy in rat. Surgery for Obesity and Related Diseases, 2018, 14, 1857-1867.	1.0	23
56	Refinement of Perioperative Feeding in a Mouse Model of Vertical Sleeve Gastrectomy. Journal of the American Association for Laboratory Animal Science, 2018, 57, 295-301.	0.6	4
57	Electrical stimulation of renal nerves for modulating urine glucose excretion in rats. Bioelectronic Medicine, 2018, 4, 7.	1.0	5
58	Liraglutide Modulates Appetite and Body Weight Through Glucagon-Like Peptide 1 Receptor–Expressing Glutamatergic Neurons. Diabetes, 2018, 67, 1538-1548.	0.3	84
59	Enhanced Glucose Control Following Vertical Sleeve Gastrectomy Does Not Require a β-Cell Glucagon-Like Peptide 1 Receptor. Diabetes, 2018, 67, 1504-1511.	0.3	30
60	GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr mice and is dispensable for the metabolic benefits ensuing after vertical sleeve gastrectomy. Molecular Metabolism, 2018, 16, 45-54.	3.0	21
61	Assessment of mammographic breast density after sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2018, 14, 1643-1651.	1.0	3
62	A comparison of rodent models of vertical sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2018, 14, 1471-1479.	1.0	5
63	Targeting FXR and FGF19 to Treat Metabolic Diseases—Lessons Learned From Bariatric Surgery. Diabetes, 2018, 67, 1720-1728.	0.3	72
64	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
65	Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance. Molecular Metabolism, 2018, 14, 130-138.	3.0	31
66	Bariatric surgery emphasizes biological sex differences in rodent hepatic lipid handling. Biology of Sex Differences, 2017, 8, 4.	1.8	18
67	Gut-Brain Cross-Talk in Metabolic Control. Cell, 2017, 168, 758-774.	13.5	218
68	Gut feeling for food choice. Nature, 2017, 542, 302-303.	13.7	7
69	Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology, 2017, 158, 2124-2133.	1.4	30
70	The Physiology and Molecular Underpinnings of the Effects of Bariatric Surgery on Obesity and Diabetes. Annual Review of Physiology, 2017, 79, 313-334.	5.6	91
71	The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice. Diabetes, 2017, 66, 372-384.	0.3	91
72	Dietary sugars, not lipids, drive hypothalamic inflammation. Molecular Metabolism, 2017, 6, 897-908.	3.0	104

#	Article	IF	CITATIONS
73	Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Molecular Metabolism, 2017, 6, 317-326.	3.0	29
74	The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metabolism, 2017, 25, 927-934.e3.	7.2	178
75	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	7.2	66
76	The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Molecular Metabolism, 2017, 6, 1339-1349.	3.0	63
77	Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron, 2017, 96, 897-909.e5.	3.8	133
78	Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents. Scientific Reports, 2017, 7, 13523.	1.6	16
79	Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture. Molecular Metabolism, 2017, 6, 748-759.	3.0	16
80	The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E651-E662.	1.8	23
81	A novel approach to glycemic control in type 2 diabetes mellitus, partial jejunal diversion: pre-clinical to clinical pathway. BMJ Open Diabetes Research and Care, 2017, 5, e000431.	1.2	7
82	Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocrine Reviews, 2017, 38, 267-296.	8.9	437
83	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	1.7	53
84	Breast Density Following Bariatric Surgery: Is BI-RADS the Answer?. Surgery for Obesity and Related Diseases, 2017, 13, S155-S156.	1.0	0
85	A leptin-regulated circuit controls glucose mobilization during noxious stimuli. Journal of Clinical Investigation, 2017, 127, 3103-3113.	3.9	25
86	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	1.7	10
87	Does bariatric surgery improve adipose tissue function?. Obesity Reviews, 2016, 17, 795-809.	3.1	81
88	Defending a new hypothesis of how bariatric surgery works. Obesity, 2016, 24, 555-555.	1.5	7
89	Targeting the brain as a cure for type 2 diabetes. Nature Medicine, 2016, 22, 709-711.	15.2	7
90	Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. Journal of Surgical Research, 2016, 206, 517-524.	0.8	6

#	Article	IF	CITATIONS
91	Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight. Diabetes, 2016, 65, 2732-2741.	0.3	45
92	Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiology and Behavior, 2016, 161, 140-144.	1.0	47
93	How Strongly Does Appetite Counter Weight Loss? Quantification of the Feedback Control of Human Energy Intake. Obesity, 2016, 24, 2289-2295.	1.5	145
94	Rat models of Mini Gastric Bypass and Single-Anastomosis Duodenal-Switch lead to metabolic improvements similar to Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Surgery for Obesity and Related Diseases, 2016, 12, S229.	1.0	0
95	The role of proximal versus distal stomach resection in the weight loss seen after vertical sleeve gastrectomy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R979-R987.	0.9	13
96	Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Molecular Metabolism, 2015, 4, 692-705.	3.0	18
97	Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. International Journal of Obesity, 2015, 39, 791-797.	1.6	61
98	Chrelin. Molecular Metabolism, 2015, 4, 437-460.	3.0	810
99	Bile Acid Signaling: Mechanism for Bariatric Surgery, Cure for NASH?. Digestive Diseases, 2015, 33, 440-446.	0.8	27
100	Vertical Sleeve Gastrectomy Restores Glucose Homeostasis in Apolipoprotein A-IV KO Mice. Diabetes, 2015, 64, 498-507.	0.3	28
101	Metabolic effects of bariatric surgery in mouse models of circadian disruption. International Journal of Obesity, 2015, 39, 1310-1318.	1.6	23
102	The Role of Gut Adaptation in the Potent Effects of Multiple Bariatric Surgeries on Obesity and Diabetes. Cell Metabolism, 2015, 21, 369-378.	7.2	189
103	The Hunger Games. Cell, 2015, 160, 805-806.	13.5	22
104	Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia, 2015, 58, 211-220.	2.9	54
105	Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin. Diabetes, 2015, 64, 2457-2466.	0.3	27
106	Biologic Responses to Weight Loss and Weight Regain: Report From an American Diabetes Association Research Symposium. Diabetes, 2015, 64, 2299-2309.	0.3	41
107	FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice. Diabetologia, 2015, 58, 2414-2423.	2.9	37
108	Adipocyte glucocorticoid receptors mediate fat-to-brain signaling. Psychoneuroendocrinology, 2015, 56, 110-119.	1.3	32

#	Article	IF	CITATIONS
109	The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids. Physiology and Behavior, 2015, 150, 38-42.	1.0	7
110	Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1076-E1084.	1.8	24
111	The Melanocortin-4 Receptor Integrates Circadian Light Cues and Metabolism. Endocrinology, 2015, 156, 1685-1691.	1.4	11
112	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	15.2	481
113	The role of small heterodimer partner in nonalcoholic fatty liver disease improvement after sleeve gastrectomy in mice. Obesity, 2014, 22, 2301-2311.	1.5	45
114	GLP-1R Responsiveness Predicts Individual Gastric Bypass Efficacy on Glucose Tolerance in Rats. Diabetes, 2014, 63, 505-513.	0.3	40
115	MGAT2 deficiency and vertical sleeve gastrectomy have independent metabolic effects in the mouse. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1065-E1072.	1.8	11
116	Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity, 2014, 22, 390-400.	1.5	160
117	The Role of β Cell Glucagon-like Peptide-1 Signaling in Glucose Regulation and Response to Diabetes Drugs. Cell Metabolism, 2014, 19, 1050-1057.	7.2	139
118	Metabolic, Behavioral, and Reproductive Effects of Vertical Sleeve Gastrectomy in an Obese Rat Model of Polycystic Ovary Syndrome. Obesity Surgery, 2014, 24, 866-876.	1.1	15
119	The role of the transcription factor ETV5 in insulin exocytosis. Diabetologia, 2014, 57, 383-391.	2.9	25
120	Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology, 2014, 42, 98-105.	1.3	32
121	FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509, 183-188.	13.7	810
122	Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut, 2014, 63, 1238-1246.	6.1	46
123	Effect of Guanylate Cyclase-C Activity on Energy and Glucose Homeostasis. Diabetes, 2014, 63, 3798-3804.	0.3	34
124	Meal feeding improves oral glucose tolerance in male rats and causes adaptations in postprandial islet hormone secretion that are independent of plasma incretins or glycemia. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E784-E792.	1.8	8
125	Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy. International Journal of Obesity, 2014, 38, 349-356.	1.6	41
126	Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats. Stress, 2014, 17, 484-493.	0.8	27

#	Article	IF	CITATIONS
127	Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia, 2014, 62, 17-25.	2.5	203
128	Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E424-E432.	1.8	143
129	Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Molecular Metabolism, 2014, 3, 507-517.	3.0	102
130	Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats. Peptides, 2014, 58, 1-6.	1.2	19
131	Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity. International Journal of Obesity, 2014, 38, 192-197.	1.6	39
132	Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. Journal of Clinical Investigation, 2014, 124, 2456-2463.	3.9	293
133	Angiotensin-converting enzyme inhibition reduces food intake and weight gain and improves glucose tolerance in melanocortin-4 receptor deficient female rats. Physiology and Behavior, 2013, 121, 43-48.	1.0	13
134	Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice. Endocrinology, 2013, 154, 3978-3983.	1.4	58
135	Roux en Y Gastric Bypass Increases Ethanol Intake in the Rat. Obesity Surgery, 2013, 23, 920-930.	1.1	35
136	Integration of Satiety Signals by the Central Nervous System. Current Biology, 2013, 23, R379-R388.	1.8	67
137	Cooperation between brain and islet in glucose homeostasis and diabetes. Nature, 2013, 503, 59-66.	13.7	261
138	Improved Rodent Maternal Metabolism But Reduced Intrauterine Growth After Vertical Sleeve Gastrectomy. Science Translational Medicine, 2013, 5, 199ra112.	5.8	54
139	Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1059-E1070.	1.8	58
140	The search for mechanisms underlying bariatric surgery. Nature Reviews Endocrinology, 2013, 9, 572-574.	4.3	16
141	Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nature Reviews Neuroscience, 2013, 14, 24-37.	4.9	95
142	Fibroblast Growth Factor 21 Mediates Specific Glucagon Actions. Diabetes, 2013, 62, 1453-1463.	0.3	191
143	The Effects of Vertical Sleeve Gastrectomy in Rodents Are Ghrelin Independent. Gastroenterology, 2013, 144, 50-52.e5.	0.6	129
144	Food as a Hormone. Science, 2013, 339, 918-919.	6.0	44

#	Article	IF	CITATIONS
145	Angiotensin Type 1a Receptors in the Paraventricular Nucleus of the Hypothalamus Protect against Diet-Induced Obesity. Journal of Neuroscience, 2013, 33, 4825-4833.	1.7	70
146	A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery. Endocrinology, 2013, 154, 2341-2351.	1.4	113
147	Increased adipose tissue hypoxia and capacity for angiogenesis and inflammation in young diet-sensitive C57 mice compared with diet-resistant FVB mice. International Journal of Obesity, 2013, 37, 853-860.	1.6	32
148	Fibroblast Growth Factor-19 Action in the Brain Reduces Food Intake and Body Weight and Improves Glucose Tolerance in Male Rats. Endocrinology, 2013, 154, 9-15.	1.4	144
149	Roux-en-Y Gastric Bypass Surgery But Not Vertical Sleeve Gastrectomy Decreases Bone Mass in Male Rats. Endocrinology, 2013, 154, 2015-2024.	1.4	60
150	High-fat diet changes the temporal profile of GLP-1 receptor-mediated hypophagia in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R68-R77.	0.9	32
151	Reversal of Diet-Induced Obesity Increases Insulin Transport into Cerebrospinal Fluid and Restores Sensitivity to the Anorexic Action of Central Insulin in Male Rats. Endocrinology, 2013, 154, 1047-1054.	1.4	47
152	Impact of intestinal electrical stimulation on nutrientâ€induced <scp>GLP</scp> â€1 secretion <i>in vivo</i> . Neurogastroenterology and Motility, 2013, 25, 700.	1.6	23
153	Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports, 2013, 1, .	0.7	66
154	Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency. Diabetes, 2013, 62, 2380-2385.	0.3	257
155	The effect of vertical sleeve gastrectomy on food choice in rats. International Journal of Obesity, 2013, 37, 288-295.	1.6	127
156	GLP-1R Agonism Enhances Adjustable Gastric Banding in Diet-Induced Obese Rats. Diabetes, 2013, 62, 3261-3267.	0.3	19
157	Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E103-E110.	1.8	41
158	Effect of vertical sleeve gastrectomy on food selection and satiation in rats. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1076-E1084.	1.8	68
159	Physiological Responses to Acute Psychological Stress Are Reduced by the PPARÎ ³ Agonist Rosiglitazone. Endocrinology, 2012, 153, 1279-1287.	1.4	25
160	Female rats are relatively more sensitive to reduced lipid versus reduced carbohydrate availability. Nutrition and Diabetes, 2012, 2, e27-e27.	1.5	9
161	Rapid and Weight-Independent Improvement of Glucose Tolerance Induced by a Peptide Designed to Elicit Apoptosis in Adipose Tissue Endothelium. Diabetes, 2012, 61, 2299-2310.	0.3	20
162	Expression of New Loci Associated With Obesity in Dietâ€Induced Obese Rats: From Genetics to Physiology. Obesity, 2012, 20, 306-312.	1.5	67

#	Article	IF	CITATIONS
163	The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. Journal of Surgical Research, 2012, 178, 33-39.	0.8	31
164	Our evolving understanding of the interaction between leptin and dopamine system to regulate ingestive behaviors. Molecular Metabolism, 2012, 1, 8-9.	3.0	2
165	High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. DMM Disease Models and Mechanisms, 2012, 5, 627-35.	1.2	53
166	All Bariatric Surgeries Are Not Created Equal: Insights from Mechanistic Comparisons. Endocrine Reviews, 2012, 33, 595-622.	8.9	258
167	Treating Obesity Like a Tumor. Cell Metabolism, 2012, 15, 1-2.	7.2	14
168	Central Nervous System Mechanisms Linking the Consumption of Palatable High-Fat Diets to the Defense of Greater Adiposity. Cell Metabolism, 2012, 15, 137-149.	7.2	95
169	Synaptic plasticity in neuronal circuits regulating energy balance. Nature Neuroscience, 2012, 15, 1336-1342.	7.1	108
170	Suppression of Food Intake by Glucagon-Like Peptide-1 Receptor Agonists: Relative Potencies and Role of Dipeptidyl Peptidase-4. Endocrinology, 2012, 153, 5735-5745.	1.4	25
171	Gastric Bypass Surgery Attenuates Ethanol Consumption in Ethanol-Preferring Rats. Biological Psychiatry, 2012, 72, 354-360.	0.7	70
172	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	15.2	241
173	High Fat Diet Alters Lactation Outcomes: Possible Involvement of Inflammatory and Serotonergic Pathways. PLoS ONE, 2012, 7, e32598.	1.1	43
174	The Anorectic Effect of GLP-1 in Rats Is Nutrient Dependent. PLoS ONE, 2012, 7, e51870.	1.1	23
175	Hypothalamic Akt PKB signaling in regulation of food intake. Frontiers in Bioscience - Scholar, 2012, S4, 953-966.	0.8	10
176	Carbohydrate Content of Post-operative Diet Influences the Effect of Vertical Sleeve Gastrectomy on Body Weight Reduction in Obese Rats. Obesity Surgery, 2012, 22, 140-151.	1.1	8
177	Deconstructing obesity: the face of fatness before and after the discovery of leptin. Diabetologia, 2012, 55, 3-6.	2.9	7
178	Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function. Journal of Neuroscience, 2011, 31, 3904-3913.	1.7	135
179	Weight-Independent Changes in Blood Glucose Homeostasis After Gastric Bypass or Vertical Sleeve Gastrectomy in Rats. Gastroenterology, 2011, 141, 950-958.	0.6	264
180	Sleeve Gastrectomy in Rats Improves Postprandial Lipid Clearance by Reducing Intestinal Triglyceride Secretion. Gastroenterology, 2011, 141, 939-949.e4.	0.6	89

#	Article	IF	CITATIONS
181	Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiology and Behavior, 2011, 103, 10-16.	1.0	147
182	GLP-1 and energy balance: an integrated model of short-term and long-term control. Nature Reviews Endocrinology, 2011, 7, 507-516.	4.3	173
183	Could the mechanisms of bariatric surgery hold the key for novel therapies?: report from a Pennington Scientific Symposium. Obesity Reviews, 2011, 12, 984-994.	3.1	41
184	Bypassing the Duodenum Does Not Improve Insulin Resistance Associated With Dietâ€Induced Obesity in Rodents. Obesity, 2011, 19, 380-387.	1.5	29
185	Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: Role of hepatic triglyceride storage. Physiology and Behavior, 2011, 104, 845-854.	1.0	49
186	Similar effects of roux-en-Y gastric bypass and vertical sleeve gastrectomy on glucose regulation in rats. Physiology and Behavior, 2011, 105, 120-123.	1.0	63
187	Efficacy of increasing physical activity to reduce children's visceral fat: A pilot randomized controlled trial. Pediatric Obesity, 2011, 6, 102-112.	3.2	23
188	Transplantation of non-visceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia, 2011, 54, 2890-2899.	2.9	43
189	The Effect of Vertical Sleeve Gastrectomy on a Rat Model of Polycystic Ovarian Syndrome. Endocrinology, 2011, 152, 3700-3705.	1.4	9
190	A role for central nervous system PPAR-Î ³ in the regulation of energy balance. Nature Medicine, 2011, 17, 623-626.	15.2	193
191	Weight loss through smoking. Nature, 2011, 475, 176-177.	13.7	35
192	Central angiotensin II has catabolic action at white and brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1081-E1091.	1.8	62
193	Uroguanylin: how the gut got another satiety hormone. Journal of Clinical Investigation, 2011, 121, 3384-3386.	3.9	24
194	Bypassing the duodenum does not improve insulin resistance associated with diet-induced obesity in rodents. Journal of the American College of Surgeons, 2010, 211, S16-S17.	0.2	0
195	High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology, 2010, 52, 934-944.	3.6	311
196	Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20529-20534.	3.3	175
197	Meal-Anticipatory Glucagon-Like Peptide-1 Secretion in Rats. Endocrinology, 2010, 151, 569-575.	1.4	86
198	Perinatal Exposure to Bisphenol-A and the Development of Metabolic Syndrome in CD-1 Mice. Endocrinology, 2010, 151, 2603-2612.	1.4	152

#	Article	IF	CITATIONS
199	The roles of leptin receptors on POMC neurons in the regulation of sex-specific energy homeostasis. Physiology and Behavior, 2010, 100, 165-172.	1.0	46
200	Transplantation or removal of intra-abdominal adipose tissue prevents age-induced glucose insensitivity. Physiology and Behavior, 2010, 101, 282-288.	1.0	33
201	Sleeve Gastrectomy Induces Loss of Weight and Fat Mass in Obese Rats, but Does Not Affect Leptin Sensitivity. Gastroenterology, 2010, 138, 2426-2436.e3.	0.6	186
202	The Microbes Made Me Eat It. Science, 2010, 328, 179-180.	6.0	21
203	Peptide Designed to Elicit Apoptosis in Adipose Tissue Endothelium Reduces Food Intake and Body Weight. Diabetes, 2010, 59, 907-915.	0.3	52
204	Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. American Journal of Physiology - Renal Physiology, 2010, 299, G652-G660.	1.6	136
205	Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology and Metabolism, 2010, 21, 643-651.	3.1	668
206	Central Nervous System Nutrient Signaling: The Regulation of Energy Balance and the Future of Dietary Therapies. Annual Review of Nutrition, 2010, 30, 219-235.	4.3	25
207	Differences in the Central Anorectic Effects of Glucagon-Like Peptide-1 and Exendin-4 in Rats. Diabetes, 2009, 58, 2820-2827.	0.3	57
208	Complex Regulation of Mammalian Target of Rapamycin Complex 1 in the Basomedial Hypothalamus by Leptin and Nutritional Status. Endocrinology, 2009, 150, 4541-4551.	1.4	73
209	The Effect of Angiotensin-Converting Enzyme Inhibition Using Captopril on Energy Balance and Glucose Homeostasis. Endocrinology, 2009, 150, 4114-4123.	1.4	74
210	Sexual differences in the control of energy homeostasis. Frontiers in Neuroendocrinology, 2009, 30, 396-404.	2.5	198
211	Duodenal-Jejunal Exclusion Improves Glucose Tolerance in the Diabetic, Goto-Kakizaki Rat by a GLP-1 Receptor-Mediated Mechanism. Journal of Gastrointestinal Surgery, 2009, 13, 1762-1772.	0.9	107
212	Targeting the CNS to treat type 2 diabetes. Nature Reviews Drug Discovery, 2009, 8, 386-398.	21.5	87
213	Dietâ€induced Obese Mice Are Leptin Insufficient After Weight Reduction. Obesity, 2009, 17, 1702-1709.	1.5	44
214	Food Intakeâ€independent Effects of CB1 Antagonism on Glucose and Lipid Metabolism. Obesity, 2009, 17, 1641-1645.	1.5	60
215	Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metabolism, 2009, 10, 89-98.	7.2	370
216	The effects of GLP-1 infusion in the hepatic portal region on food intake. Regulatory Peptides, 2009, 155, 110-114.	1.9	28

#	Article	IF	CITATIONS
217	Failure of glucagon-like peptide-1 to induce panic attacks or anxiety in patients with panic disorder. Journal of Psychiatric Research, 2008, 42, 787-789.	1.5	11
218	The Role of Hypothalamic Mammalian Target of Rapamycin Complex 1 Signaling in Diet-Induced Obesity. Journal of Neuroscience, 2008, 28, 7202-7208.	1.7	175
219	Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing. Diabetes, 2008, 57, 2603-2612.	0.3	116
220	Regulation of Food Intake Through Hypothalamic Signaling Networks Involving mTOR. Annual Review of Nutrition, 2008, 28, 295-311.	4.3	120
221	Voluntary consumption of ethyl oleate reduces food intake and body weight in rats. Physiology and Behavior, 2008, 93, 912-918.	1.0	3
222	Role of central glucagon-like peptide-1 in hypothalamo-pituitary-adrenocortical facilitation following chronic stress. Experimental Neurology, 2008, 210, 458-466.	2.0	40
223	The Integrative Role of CNS Fuel-Sensing Mechanisms in Energy Balance and Glucose Regulation. Annual Review of Physiology, 2008, 70, 513-535.	5.6	158
224	Arcuate Glucagon-Like Peptide 1 Receptors Regulate Glucose Homeostasis but Not Food Intake. Diabetes, 2008, 57, 2046-2054.	0.3	281
225	The role of GM-CSF in adipose tissue inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1038-E1046.	1.8	83
226	Mice with chronically increased circulating ghrelin develop age-related glucose intolerance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E752-E760.	1.8	43
227	Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E630-E639.	1.8	70
228	Fatty Acid Synthase Inhibitors Modulate Energy Balance via Mammalian Target of Rapamycin Complex 1 Signaling in the Central Nervous System. Diabetes, 2008, 57, 3231-3238.	0.3	52
229	Loss of Cytokine-STAT5 Signaling in the CNS and Pituitary Gland Alters Energy Balance and Leads to Obesity. PLoS ONE, 2008, 3, e1639.	1.1	75
230	The Effects of the Melanocortin Agonist (MT-II) on Subcutaneous and Visceral Adipose Tissue in Rodents. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1153-1161.	1.3	8
231	Sexually dimorphic responses to fat loss after caloric restriction or surgical lipectomy. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E316-E326.	1.8	56
232	Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2163-R2169.	0.9	76
233	The effect of fat removal on glucose tolerance is depot specific in male and female mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1012-E1020.	1.8	73
234	Glucagon-Like Peptide-1 (GLP-1) Receptors Expressed on Nerve Terminals in the Portal Vein Mediate the Effects of Endogenous GLP-1 on Glucose Tolerance in Rats. Endocrinology, 2007, 148, 4965-4973.	1.4	279

#	Article	IF	CITATIONS
235	The Role of CNS Fuel Sensing in Energy and Glucose Regulation. Gastroenterology, 2007, 132, 2158-2168.	0.6	110
236	Visceral abdominal fat is correlated with whole-body fat and physical activity among 8-y-old children at risk of obesity. American Journal of Clinical Nutrition, 2007, 85, 46-53.	2.2	77
237	Alcohol Drinking in MCH Receptor-1-Deficient Mice. Alcoholism: Clinical and Experimental Research, 2007, 31, 1325-1337.	1.4	16
238	Hypothalamic mTOR Signaling Regulates Food Intake. Science, 2006, 312, 927-930.	6.0	1,111
239	Hap1 and GABA: Thinking about food intake. Cell Metabolism, 2006, 3, 388-390.	7.2	10
240	Leptin in Energy Balance and Reward: Two Faces of the Same Coin?. Neuron, 2006, 51, 678-680.	3.8	51
241	Obesity and gut flora. Nature, 2006, 444, 1009-1010.	13.7	188
242	How diabetes went to our heads. Nature Medicine, 2006, 12, 47-49.	15.2	71
243	Role for dopamine-3 receptor in the hyperphagia of an unanticipated high-fat meal in rats. Pharmacology Biochemistry and Behavior, 2006, 85, 190-197.	1.3	7
244	Effect of Growth Hormone on Susceptibility to Diet-Induced Obesity. Endocrinology, 2006, 147, 2801-2808.	1.4	93
245	Apolipoprotein A-IV interacts synergistically with melanocortins to reduce food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R202-R207.	0.9	27
246	Effects of a Fixed Meal Pattern on Ghrelin Secretion: Evidence for a Learned Response Independent of Nutrient Status. Endocrinology, 2006, 147, 23-30.	1.4	293
247	Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity. Obesity Reviews, 2005, 6, 259-265.	3.1	42
248	PYY3-36 as an anti-obesity drug target. Obesity Reviews, 2005, 6, 307-322.	3.1	109
249	The Effect of Adrenalectomy on Ghrelin Secretion and Orexigenic Action. Journal of Neuroendocrinology, 2005, 17, 445-451.	1.2	22
250	More neurons, less weight. Nature Medicine, 2005, 11, 1276-1278.	15.2	4
251	Mechanisms of oleoylethanolamide-induced changes in feeding behavior and motor activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R729-R737.	0.9	83
252	Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E447-E453.	1.8	268

#	Article	IF	CITATIONS
253	Neuropeptide Y prepares rats for scheduled feeding. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1606-R1611.	0.9	22
254	Mice lacking ghrelin receptors resist the development of diet-induced obesity. Journal of Clinical Investigation, 2005, 115, 3564-3572.	3.9	537
255	The Role of Central Glucagon-Like Peptide-1 in Mediating the Effects of Visceral Illness: Differential Effects in Rats and Mice. Endocrinology, 2005, 146, 458-462.	1.4	83
256	Comparative analysis of ACTH and corticosterone sampling methods in rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E823-E828.	1.8	258
257	The Effect of the Melanocortin Agonist, MT-II, on the Defended Level of Body Adiposity. Endocrinology, 2005, 146, 3732-3738.	1.4	26
258	Diet-Induced Weight Loss Is Associated with Decreases in Plasma Serum Amyloid A and C-Reactive Protein Independent of Dietary Macronutrient Composition in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2244-2249.	1.8	107
259	The Regulation of Energy Balance by the Central Nervous System. Psychiatric Clinics of North America, 2005, 28, 25-38.	0.7	16
260	The Role of Energy Expenditure in the Differential Weight Loss in Obese Women on Low-Fat and Low-Carbohydrate Diets. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1475-1482.	1.8	123
261	The role of previous exposure in the appetitive and consummatory effects of orexigenic neuropeptides. Peptides, 2005, 26, 751-757.	1.2	39
262	Chronic food restriction and reduced dietary fat: Risk factors for bouts of overeating. Physiology and Behavior, 2005, 86, 578-585.	1.0	12
263	Hormonal mediation of energy homeostasis in obesity, diabetes and related disorders. Drug Discovery Today Disease Mechanisms, 2005, 2, 321-326.	0.8	3
264	CM-CSF action in the CNS decreases food intake and body weight. Journal of Clinical Investigation, 2005, 115, 3035-3044.	3.9	67
265	New ways in which GLP-1 can regulate glucose homeostasis. Journal of Clinical Investigation, 2005, 115, 3406-3408.	3.9	39
266	Differential Effects of Adrenalectomy on Melanin-Concentrating Hormone and Orexin A. Endocrinology, 2004, 145, 3404-3412.	1.4	17
267	Ciliary Neurotrophic Factor and Leptin Induce Distinct Patterns of Immediate Early Gene Expression in the Brain. Diabetes, 2004, 53, 911-920.	0.3	69
268	Obesity induced by a high-fat diet downregulates apolipoprotein A-IV gene expression in rat hypothalamus. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E366-E370.	1.8	35
269	Fat hormones pull their weight in the CNS. Nature Medicine, 2004, 10, 454-455.	15.2	12
270	THE CRITICAL ROLE OF THE MELANOCORTIN SYSTEM IN THE CONTROL OF ENERGY BALANCE. Annual Review of Nutrition, 2004, 24, 133-149.	4.3	137

#	Article	IF	CITATIONS
271	Regulation of energy homeostasis by peripheral signals. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 497-515.	2.2	44
272	High-fat diet induced adiposity in mice with targeted disruption of the dopamine-3 receptor gene. Behavioural Brain Research, 2004, 151, 313-319.	1.2	27
273	Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiology and Behavior, 2004, 83, 573-578.	1.0	138
274	Mice lacking the syndecan-3 gene are resistant to diet-induced obesity. Journal of Clinical Investigation, 2004, 114, 1354-1360.	3.9	84
275	Insulin and Leptin as Adiposity Signals. Endocrine Reviews, 2004, 59, 267-285.	7.1	228
276	Obesity and Diabetes, Regulation of Food Intake. , 2004, , 399-402.		0
277	Ethanol consumption in mice with a targeted disruption of the dopamine-3 receptor gene. Addiction Biology, 2003, 8, 295-303.	1.4	21
278	7-OH-DPAT selectively reduces intake of both chow and high fat diets in different food intake regimens. Pharmacology Biochemistry and Behavior, 2003, 76, 517-523.	1.3	6
279	Neuropeptide Y and lipid increase apolipoprotein AIV gene expression in rat hypothalamus. Brain Research, 2003, 971, 232-238.	1.1	26
280	Monitoring of stored and available fuel by the CNS: implications for obesity. Nature Reviews Neuroscience, 2003, 4, 901-909.	4.9	206
281	Assessment of the aversive consequences of acute and chronic administration of the melanocortin agonist, MTII. International Journal of Obesity, 2003, 27, 550-556.	1.6	14
282	C75 inhibits food intake by increasing CNS glucose metabolism. Nature Medicine, 2003, 9, 483-485.	15.2	70
283	Syndecanâ€3 Modulates Food Intake by Interacting with the Melanocortin/AgRP Pathway. Annals of the New York Academy of Sciences, 2003, 994, 66-73.	1.8	55
284	Increased Dietary Fat Attenuates the Anorexic Effects of Intracerebroventricular Injections of MTII. Endocrinology, 2003, 144, 2941-2946.	1.4	56
285	Is the Energy Homeostasis System Inherently Biased Toward Weight Gain?. Diabetes, 2003, 52, 232-238.	0.3	323
286	A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1617-1623.	1.8	724
287	Expression of biologically active rat apolipoprotein AIV in Escherichia coli. Physiology and Behavior, 2003, 78, 149-155.	1.0	26
288	Two novel paradigms for the simultaneous assessment of conditioned taste aversion and food intake effects of anorexic agents. Physiology and Behavior, 2003, 79, 761-766.	1.0	12

#	Article	IF	CITATIONS
289	Adrenalectomy Alters the Sensitivity of the Central Nervous System Melanocortin System. Diabetes, 2003, 52, 2928-2934.	0.3	47
290	Insulin Activation of Phosphatidylinositol 3-Kinase in the Hypothalamic Arcuate Nucleus: A Key Mediator of Insulin-Induced Anorexia. Diabetes, 2003, 52, 227-231.	0.3	441
291	Learned Meal Initiation Attenuates the Anorexic Effects of the Melanocortin Agonist MTII. Diabetes, 2003, 52, 2684-2688.	0.3	30
292	Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R494-R499.	0.9	59
293	Altered feeding responses in mice with targeted disruption of the dopamine-3 receptor gene Behavioral Neuroscience, 2003, 117, 46-54.	0.6	14
294	A Controlled High-Fat Diet Induces an Obese Syndrome in Rats. Journal of Nutrition, 2003, 133, 1081-1087.	1.3	425
295	CNS Glucagon-Like Peptide-1 Receptors Mediate Endocrine and Anxiety Responses to Interoceptive and Psychogenic Stressors. Journal of Neuroscience, 2003, 23, 6163-6170.	1.7	193
296	Insulin and the Blood-Brain Barrier. Current Pharmaceutical Design, 2003, 9, 795-800.	0.9	288
297	Insulin and Leptin Combine Additively to Reduce Food Intake and Body Weight in Rats. Endocrinology, 2002, 143, 2449-2452.	1.4	115
298	Eating Elicited by Orexin-A, But Not Melanin-Concentrating Hormone, Is Opioid Mediated. Endocrinology, 2002, 143, 2995-3000.	1.4	149
299	Acute 3rd-ventricular amylin infusion potently reduces food intake but does not produce aversive consequences. Peptides, 2002, 23, 985-988.	1.2	54
300	Principles for interpreting interactions among the multiple systems that influence food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R46-R53.	0.9	18
301	The Catabolic Action of Insulin in the Brain Is Mediated by Melanocortins. Journal of Neuroscience, 2002, 22, 9048-9052.	1.7	363
302	The Diverse Roles of Specific GLP-1 Receptors in the Control of Food Intake and the Response to Visceral Illness. Journal of Neuroscience, 2002, 22, 10470-10476.	1.7	263
303	Cloned mice have an obese phenotype not transmitted to their offspring. Nature Medicine, 2002, 8, 262-267.	15.2	345
304	Comparison of Central and Peripheral Administration of C75 on Food Intake, Body Weight, and Conditioned Taste Aversion. Diabetes, 2002, 51, 3196-3201.	0.3	85
305	Activity of body energy regulatory pathways in inflammation-induced anorexia. Physiology and Behavior, 2001, 73, 517-523.	1.0	17
306	Opioid receptor involvement in the effect of AgRP- (83–132) on food intake and food selection. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R814-R821.	0.9	107

#	Article	IF	CITATIONS
307	Effect of leptin on intestinal apolipoprotein AIV in response to lipid feeding. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R753-R759.	0.9	46
308	Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1382-R1387.	0.9	66
309	Neuropeptides and the Control of Energy Homeostasis. , 2001, 5, 93-115.		3
310	The role of the hypothalamic melanocortin system in behavioral appetitive processes. Pharmacology Biochemistry and Behavior, 2001, 69, 603-609.	1.3	13
311	Immediate and Prolonged Patterns of Agouti-Related Peptide-(83–132)-Induced c-Fos Activation in Hypothalamic and Extrahypothalamic Sites*. Endocrinology, 2001, 142, 1050-1056.	1.4	74
312	Inhibition of Central Amylin Signaling Increases Food Intake and Body Adiposity in Rats. Endocrinology, 2001, 142, 5035-5038.	1.4	152
313	Central nervous system control of food intake. Nature, 2000, 404, 661-671.	13.7	5,309
314	Adiposity signals and the control of energy homeostasis. Nutrition, 2000, 16, 894-902.	1.1	201
315	Long-term orexigenic effects of AgRP-(83—132) involve mechanisms other than melanocortin receptor blockade. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R47-R52.	0.9	241
316	Hypothalamic Melanin-Concentrating Hormone and Estrogen-Induced Weight Loss. Journal of Neuroscience, 2000, 20, 8637-8642.	1.7	160
317	A Novel Selective Melanocortin-4 Receptor Agonist Reduces Food Intake in Rats and Mice without Producing Aversive Consequences. Journal of Neuroscience, 2000, 20, 3442-3448.	1.7	174
318	The Role of CNS Glucagon-Like Peptide-1 (7-36) Amide Receptors in Mediating the Visceral Illness Effects of Lithium Chloride. Journal of Neuroscience, 2000, 20, 1616-1621.	1.7	163
319	Editorial: Targeted Gene Disruption in Endocrine Research—The Case of Glucagon-Like Peptide-1 and Neuroendocrine Function. Endocrinology, 2000, 141, 473-475.	1.4	8
320	Combining Non-Isotopic Localization of NPY mRNA with Immunocytochemistry. , 2000, 153, 199-206.		0
321	Amylin and Insulin Interact to Reduce Food Intake in Rats. Hormone and Metabolic Research, 2000, 32, 62-65.	0.7	55
322	Amylin: A Novel Action in the Brain to Reduce Body Weight*. Endocrinology, 2000, 141, 850-850.	1.4	167
323	CNS Melanocortin System Involvement in the Regulation of Food Intake. Hormones and Behavior, 2000, 37, 299-305.	1.0	83
324	Food Intake and the Regulation of Body Weight. Annual Review of Psychology, 2000, 51, 255-277.	9.9	293

#	Article	IF	CITATIONS
325	Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiology and Behavior, 2000, 68, 509-514.	1.0	307
326	Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1425-R1433.	0.9	19
327	Role of the CNS Melanocortin System in the Response to Overfeeding. Journal of Neuroscience, 1999, 19, 2362-2367.	1.7	194
328	Intraventricular neuropeptide Y decreases need-induced sodium appetite and increases pica in rats Behavioral Neuroscience, 1999, 113, 826-832.	0.6	18
329	Leptin Receptor Long-form Splice-variant Protein Expression in Neuron Cell Bodies of the Brain and Co-localization with Neuropeptide Y mRNA in the Arcuate Nucleus. Journal of Histochemistry and Cytochemistry, 1999, 47, 353-362.	1.3	181
330	Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes, 1999, 48, 1275-1280.	0.3	104
331	Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Research, 1999, 848, 114-123.	1.1	341
332	Nitrous Oxide-Induced Hypothermia in the Rat. Pharmacology Biochemistry and Behavior, 1999, 62, 189-196.	1.3	17
333	Cerebrospinal Fluid and Plasma Leptin Measurements: Covariability with Dopamine and Cortisol in Fasting Humans. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3579-3585.	1.8	36
334	Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Research, 1998, 779, 75-83.	1.1	106
335	Central infusion of glucagon-like peptide-1-(7–36) amide (GLP-1) receptor antagonist attenuates lithium chloride-induced c-Fos induction in rat brainstem. Brain Research, 1998, 801, 164-170.	1.1	79
336	Effects of Food Deprivation on Conditioned Taste Aversions in Rats. Pharmacology Biochemistry and Behavior, 1998, 60, 459-466.	1.3	23
337	Obesity, diabetes and the central nervous system. Diabetologia, 1998, 41, 863-881.	2.9	174
338	Response of neuropeptide Y-deficient mice to feeding effectors. Regulatory Peptides, 1998, 75-76, 383-389.	1.9	45
339	NPY and food intake: Discrepancies in the model. Regulatory Peptides, 1998, 75-76, 403-408.	1.9	76
340	NPY-induced overfeeding suppresses hypothalamic NPY mRNA expression: potential roles of plasma insulin and leptin. Regulatory Peptides, 1998, 75-76, 425-431.	1.9	32
341	Signals That Regulate Food Intake and Energy Homeostasis. Science, 1998, 280, 1378-1383.	6.0	1,063
342	The Physiology of Motivation Revisited. Appetite, 1998, 30, 341.	1.8	0

#	Article	IF	CITATIONS
343	Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes, 1998, 47, 538-543.	0.3	157
344	Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R248-R254.	0.9	105
345	Brainstem Application of Melanocortin Receptor Ligands Produces Long-Lasting Effects on Feeding and Body Weight. Journal of Neuroscience, 1998, 18, 10128-10135.	1.7	258
346	Effect of a high-fat diet on food intake and hypothalamic neuropeptide gene expression in streptozotocin diabetes Journal of Clinical Investigation, 1998, 102, 340-346.	3.9	58
347	Neuroendocrine Responses to Starvation and Weight Loss. New England Journal of Medicine, 1997, 336, 1802-1811.	13.9	254
348	The Regulation of Energy Balance. Current Directions in Psychological Science, 1997, 6, 39-44.	2.8	15
349	Leptin Increases Hypothalamic Pro-opiomelanocortin mRNA Expression in the Rostral Arcuate Nucleus. Diabetes, 1997, 46, 2119-2123.	0.3	785
350	Wasting illness as a disorder of body weight regulation. Proceedings of the Nutrition Society, 1997, 56, 785-791.	0.4	9
351	Adrenalectomy Increases Sensitivity to Central Insulin. Physiology and Behavior, 1997, 62, 631-634.	1.0	50
352	Melanocortin receptors in leptin effects. Nature, 1997, 390, 349-349.	13.7	456
353	The New Biology of Body Weight Regulation. Journal of the American Dietetic Association, 1997, 97, 54-58.	1.3	79
354	The Effect of Intragastric Ethanol on Meal Size in the Rat. Pharmacology Biochemistry and Behavior, 1997, 56, 379-382.	1.3	5
355	Central leptin stimulates corticosterone secretion at the onset of the dark phase. Diabetes, 1997, 46, 1911-1914.	0.3	43
356	Learned tolerance to the corticosterone-increasing action of ethanol in rats. Pharmacology Biochemistry and Behavior, 1996, 55, 269-273.	1.3	14
357	Endocrine regulation of food intake and body weight. Translational Research, 1996, 127, 328-332.	2.4	26
358	The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neuroscience and Biobehavioral Reviews, 1996, 20, 139-144.	2.9	116
359	Intraventricular Leptin Reduces Food Intake and Body Weight of Lean Rats but Not Obese Zucker Rats. Hormone and Metabolic Research, 1996, 28, 664-668.	0.7	252
360	Identification of targets of leptin action in rat hypothalamus Journal of Clinical Investigation, 1996, 98, 1101-1106.	3.9	1,322

#	Article	IF	CITATIONS
361	Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon Behavioral Neuroscience, 1995, 109, 567-569.	0.6	61
362	A comparison between effects of intraventricular insulin and intraperitoneal lithium chloride on three measures sensitive to emetic agents Behavioral Neuroscience, 1995, 109, 547-550.	0.6	65
363	Forebrain contribution to the induction of a cellular correlate of conditioned taste aversion in the nucleus of the solitary tract. Journal of Neuroscience, 1995, 15, 6789-6796.	1.7	60
364	Effect of occluding the pylorus on intraoral intake: A test of the gastric hypothesis of meal termination. Physiology and Behavior, 1995, 58, 245-249.	1.0	25
365	Discriminative cues produced by NPY do not generalize to the interoceptive cues produced by food deprivation. Physiology and Behavior, 1995, 58, 1237-1241.	1.0	17
366	Neurological dissociation of gastrointestinal and metabolic contributions to meal size control Behavioral Neuroscience, 1994, 108, 347-352.	0.6	60
367	A behavioral probe of the growth of intake potential during the inter-meal interval in the rat Behavioral Neuroscience, 1994, 108, 353-361.	0.6	15
368	Effects of Interrupting an Intraoral Meal on Meal Size and Meal Duration in Rats. Appetite, 1993, 20, 13-20.	1.8	17
369	Lesions of the central nucleus of the amygdala I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behavioural Brain Research, 1993, 59, 11-17.	1.2	112
370	Lesions of the central nucleus of the amygdala II: Effects on intraoral NaCl intake. Behavioural Brain Research, 1993, 59, 19-25.	1.2	57
371	Daily caloric intake in intact and chronic decerebrate rats Behavioral Neuroscience, 1993, 107, 876-881.	0.6	44
372	Measurement and quantification of stereotypy in freely behaving subjects: An information analysis. Behavior Research Methods, 1989, 21, 271-274.	1.3	8
373	Ingestive homeostasis: The primacy of learning , 0, , 11-27.		16
374	Inhibition of Central Amylin Signaling Increases Food Intake and Body Adiposity in Rats. , 0, .		56
375	Immediate and Prolonged Patterns of Agouti-Related Peptide-(83–132)-Induced c-Fos Activation in Hypothalamic and Extrahypothalamic Sites. , 0, .		31
376	Eating Elicited by Orexin-A, But Not Melanin-Concentrating Hormone, Is Opioid Mediated. , 0, .		54
377	Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon Like Peptide-1 in the Paraventricular Hypothalamus. SSRN Electronic Journal, 0, , .	0.4	1