
Thorsten Wiegand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4177338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology. Science, 2005, 310, 987-991.	12.6	1,685
2	Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 2004, 104, 209-229.	2.7	886
3	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	4.0	605
4	Global patterns of tropical forest fragmentation. Nature, 2018, 554, 519-522.	27.8	409
5	Statistical inference for stochastic simulation models - theory and application. Ecology Letters, 2011, 14, 816-827.	6.4	320
6	Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos, 2003, 100, 209-222.	2.7	289
7	Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology, 2008, 96, 807-820.	4.0	268
8	Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. Ecography, 2015, 38, 1-11.	4.5	239
9	Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 2006, 29, 671-682.	4.5	236
10	Fragmented landscapes, road mortality and patch connectivity: modelling influences on the dispersal of Eurasian lynx. Journal of Applied Ecology, 2004, 41, 711-723.	4.0	226
11	Species Associations in a Heterogeneous Sri Lankan Dipterocarp Forest. American Naturalist, 2007, 170, E77-E95.	2.1	226
12	Finding the Missing Link between Landscape Structure and Population Dynamics: A Spatially Explicit Perspective. American Naturalist, 1999, 154, 605-627.	2.1	208
13	Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. Journal of Applied Ecology, 2002, 39, 189-203.	4.0	192
14	Effects of Habitat Loss and Fragmentation on Population Dynamics. Conservation Biology, 2005, 19, 108-121.	4.7	185
15	Endangered Species Constrained by Natural and Human Factors: the Case of Brown Bears in Northern Spain. Conservation Biology, 2003, 17, 1276-1289.	4.7	183
16	Contextâ€dependent interactions between adult shrubs and seedlings in a semiâ€arid shrubland. Journal of Vegetation Science, 2005, 16, 331-340.	2.2	182
17	ANALYZING THE SPATIAL STRUCTURE OF A SRI LANKAN TREE SPECIES WITH MULTIPLE SCALES OF CLUSTERING. Ecology, 2007, 88, 3088-3102.	3.2	172
18	Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics. Movement Ecology, 2013, 1, 6.	2.8	169

#	Article	IF	CITATIONS
19	Discovery of fairy circles in Australia supports self-organization theory. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3551-3556.	7.1	160
20	Handbook of Spatial Point-Pattern Analysis in Ecology. , 0, , .		155
21	Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19120-19125.	7.1	153
22	The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends in Ecology and Evolution, 2019, 34, 211-223.	8.7	151
23	Effects of Matrix Heterogeneity on Animal Dispersal: From Individual Behavior to Metapopulation‣evel Parameters. American Naturalist, 2004, 164, E130-E153.	2.1	150
24	RULE-BASED ASSESSMENT OF SUITABLE HABITAT AND PATCH CONNECTIVITY FOR THE EURASIAN LYNX. , 2002, 12, 1469-1483.		149
25	An evaluation of the state of spatial point pattern analysis in ecology. Ecography, 2016, 39, 1042-1055.	4.5	136
26	A spatially explicit analysis of seedling recruitment in the terrestrial orchid <i>Orchis purpurea</i> . New Phytologist, 2007, 176, 448-459.	7.3	133
27	Do Grasslands Have a Memory: Modeling Phytomass Production of a Semiarid South African Grassland. Ecosystems, 2004, 7, 243.	3.4	127
28	ASSESSING THE RISK OF EXTINCTION FOR THE BROWN BEAR (URSUS ARCTOS) IN THE CORDILLERA CANTABRICA, SPAIN. Ecological Monographs, 1998, 68, 539-570.	5.4	118
29	Extending point pattern analysis for objects of finite size and irregular shape. Journal of Ecology, 2006, 94, 825-837.	4.0	116
30	Integrating the underlying structure of stochasticity into community ecology. Ecology, 2020, 101, e02922.	3.2	113
31	Species associations in an oldâ€growth temperate forest in northâ€eastern China. Journal of Ecology, 2010, 98, 674-686.	4.0	108
32	How individual species structure diversity in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19029-19033.	7.1	106
33	Dealing with Uncertainty in Spatially Explicit Population Models. Biodiversity and Conservation, 2004, 13, 53-78.	2.6	105
34	Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist, 2014, 202, 616-627.	7.3	104
35	Recruitment in Tropical Tree Species: Revealing Complex Spatial Patterns. American Naturalist, 2009, 174, E106-E140.	2.1	103
36	A Simulation Model for Shrub Ecosystem in the Semiarid Karoo, South Africa. Ecology, 1995, 76, 2205-2221.	3.2	97

#	Article	IF	CITATIONS
37	Evidence for the spatial segregation hypothesis: a test with nineâ€year survivorship data in a Mediterranean shrubland. Ecology, 2010, 91, 2110-2120.	3.2	96
38	A systematic comparison of summary characteristics for quantifying point patterns in ecology. Ecography, 2013, 36, 92-103.	4.5	89
39	Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141657.	2.6	86
40	Effects of topography on structuring local species assemblages in a <scp>S</scp> ri <scp>L</scp> ankan mixed dipterocarp forest. Journal of Ecology, 2013, 101, 149-160.	4.0	82
41	Vegetation change in semiarid communities. Plant Ecology, 1996, 125, 169-183.	1.2	79
42	Modeling Species' Distributions to Improve Conservation in Semiurban Landscapes: Koala Case Study. Conservation Biology, 2006, 20, 449-459.	4.7	78
43	ANIMAL HABITAT QUALITY AND ECOSYSTEM FUNCTIONING: EXPLORING SEASONAL PATTERNS USING NDVI. Ecological Monographs, 2008, 78, 87-103.	5.4	77
44	Land use impact on Vitellaria paradoxa C.F. Gaerten. stand structure and distribution patterns: a comparison of Biosphere Reserve of Pendjari in Atacora district in Benin. Agroforestry Systems, 2008, 72, 205-220.	2.0	73
45	Testing the independent species' arrangement assertion made by theories of stochastic geometry of biodiversity. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3312-3320.	2.6	72
46	Spatial variation in belowâ€ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three coâ€occurring orchid species. Journal of Ecology, 2012, 100, 1328-1337.	4.0	72
47	Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography, 2018, 41, 1910-1919.	4.5	71
48	Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Tropica, 2005, 95, 123-131.	2.0	69
49	Conserving pelagic habitats: seascape modelling of an oceanic top predator. Journal of Applied Ecology, 2011, 48, 121-132.	4.0	69
50	Abrupt population changes in treeline ecotones along smooth gradients. Journal of Ecology, 2006, 94, 880-892.	4.0	68
51	Patterns for parameters in simulation models. Ecological Modelling, 2007, 204, 553-556.	2.5	68
52	Spatial patterns of tree species richness in two temperate forests. Journal of Ecology, 2011, 99, 1382-1393.	4.0	68
53	Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Science Advances, 2021, 7, eabg7012.	10.3	66
54	Spatial associations among tree species in a temperate forest community in North-western Spain. Forest Ecology and Management, 2010, 260, 456-465.	3.2	64

#	Article	IF	CITATIONS
55	Population Dynamics, Disturbance, and Pattern Evolution: Identifying the Fundamental Scales of Organization in a Model Ecosystem. American Naturalist, 1998, 152, 321-337.	2.1	63
56	Tropical tree species assemblages in topographical habitats change in time and with life stage. Journal of Ecology, 2011, 99, 1441-1452.	4.0	63
57	Predicting range shifts of Asian elephants under global change. Diversity and Distributions, 2019, 25, 822-838.	4.1	62
58	Lynx reintroductions in fragmented landscapes of Germany: Projects with a future or misunderstood wildlife conservation?. Biological Conservation, 2005, 125, 169-182.	4.1	59
59	Phylogenetic and functional diversity area relationships in two temperate forests. Ecography, 2013, 36, 883-893.	4.5	59
60	The relative effects of habitat loss and fragmentation on population genetic variation in the redâ€cockaded woodpecker (<i>Picoides borealis</i>). Molecular Ecology, 2010, 19, 3679-3691.	3.9	58
61	Expansion of Brown Bears (Ursus arctos) into the Eastern Alps: A Spatially Explicit Population Model. Biodiversity and Conservation, 2004, 13, 79-114.	2.6	57
62	Decline and recovery of a large carnivore: environmental change and long-term trends in an endangered brown bear population. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161832.	2.6	56
63	Analyzing the effect of stepping stones on target patch colonisation in structured landscapes for Eurasian lynx. Landscape Ecology, 2011, 26, 501-513.	4.2	55
64	Assessing habitat suitability for tiger in the fragmented Terai Arc Landscape of India and Nepal. Ecography, 2011, 34, 970-981.	4.5	52
65	A global framework for linking alpineâ€ŧreeline ecotone patterns to underlying processes. Ecography, 2021, 44, 265-292.	4.5	52
66	Spatially Explicit Metrics of Species Diversity, Functional Diversity, and Phylogenetic Diversity: Insights into Plant Community Assembly Processes. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 329-351.	8.3	51
67	Understanding species persistence for defining conservation actions: A management landscape for jaguars in the Atlantic Forest. Biological Conservation, 2013, 159, 422-433.	4.1	50
68	Multigenerational analysis of spatial structure in the terrestrial, foodâ€deceptive orchid <i>Orchis mascula</i> . Journal of Ecology, 2009, 97, 206-216.	4.0	48
69	The impact of fire and density-dependent mortality on the spatial patterns of a pine forest in the Hulun Buir sandland, Inner Mongolia, China. Forest Ecology and Management, 2009, 257, 2098-2107.	3.2	48
70	Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Global Ecology and Biogeography, 2018, 27, 581-592.	5.8	48
71	Revealing the Driving Forces of Mid-Cities Urban Growth Patterns Using Spatial Modeling: a Case Study of Los Ãngeles, Chile. Ecology and Society, 2007, 12, .	2.3	46
72	Effect of spatial processes and topography on structuring species assemblages in a Sri Lankan dipterocarp forest. Ecology, 2014, 95, 376-386.	3.2	46

#	Article	IF	CITATIONS
73	Coupling instantaneous energy-budget models and behavioural mode analysis to estimate optimal foraging strategy: an example with wandering albatrosses. Movement Ecology, 2014, 2, 8.	2.8	46
74	Distanceâ€dependent seedling mortality and longâ€ŧerm spacing dynamics in a neotropical forest community. Ecology Letters, 2017, 20, 1469-1478.	6.4	46
75	Long-term dynamics of a semiarid grass steppe under stochastic climate and different grazing regimes: A simulation analysis. Journal of Arid Environments, 2008, 72, 2211-2231.	2.4	45
76	Envelope tests for spatial point patterns with and without simulation. Ecosphere, 2016, 7, e01365.	2.2	45
77	Nonrandom spatial structuring of orchids in a hybrid zone of three <i>Orchis</i> species. New Phytologist, 2012, 193, 454-464.	7.3	44
78	Mechanisms underlying local functional and phylogenetic beta diversity in two temperate forests. Ecology, 2015, 96, 1062-1073.	3.2	42
79	Stochastic dilution effects weaken deterministic effects of nicheâ€based processes in species rich forests. Ecology, 2016, 97, 347-360.	3.2	42
80	Functionally specialised birds respond flexibly to seasonal changes in fruit availability. Journal of Animal Ecology, 2017, 86, 800-811.	2.8	42
81	Disentangling the Formation of Contrasting Tree-Line Physiognomies Combining Model Selection and Bayesian Parameterization for Simulation Models. American Naturalist, 2011, 177, E136-E152.	2.1	41
82	Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China. PLoS ONE, 2012, 7, e46074.	2.5	41
83	Temporal and spatial differentiation in seedling emergence may promote species coexistence in Mediterranean fireâ€prone ecosystems. Ecography, 2008, 31, 620-629.	4.5	39
84	Evaluating management interventions in small populations of a perennial herb <i>Primula vulgaris</i> using spatio-temporal analyses of point patterns. Journal of Applied Ecology, 2010, 47, 431-440.	4.0	38
85	Spatial pattern of adult trees and the mammalâ€generated seed rain in the Iberian pear. Ecography, 2010, 33, 545-555.	4.5	38
86	Hierarchical mechanisms of spatially contagious seed dispersal in complex seedâ€disperser networks. Ecology, 2014, 95, 514-526.	3.2	38
87	The structure of tropical forests and sphere packings. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15125-15129.	7.1	38
88	Title is missing!. Plant Ecology, 2000, 150, 115-131.	1.6	37
89	Using individual-based movement models to assess inter-patch connectivity for large carnivores in fragmented landscapes. Biological Conservation, 2013, 167, 298-309.	4.1	37
90	Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140922.	2.6	37

#	Article	IF	CITATIONS
91	Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia. Journal of Environmental Management, 2013, 123, 77-87.	7.8	36
92	Unravelling conflicting density―and distanceâ€dependent effects on plant reproduction using a spatially explicit approach. Journal of Ecology, 2015, 103, 1344-1353.	4.0	36
93	Spatial ecology of a root parasite ? from pattern to process. Austral Ecology, 2007, 32, 359-369.	1.5	35
94	Frugivore behaviour determines plant distribution: a spatiallyâ€explicit analysis of a plantâ€disperser interaction. Ecography, 2012, 35, 113-123.	4.5	34
95	What drives the spatial distribution and dynamics of local species richness in tropical forest?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171503.	2.6	34
96	Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 2019, 9, 17708.	3.3	34
97	General statistical scaling laws for stability in ecological systems. Ecology Letters, 2021, 24, 1474-1486.	6.4	32
98	Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model. Biogeosciences, 2014, 11, 1261-1272.	3.3	31
99	Assisting seed dispersers to restore oldfields: An individualâ€based model of the interactions among badgers, foxes and Iberian pear trees. Journal of Applied Ecology, 2018, 55, 600-611.	4.0	31
100	Perspective article: Simulation models for semiâ€arid rangelands of southern Africa. African Journal of Range and Forage Science, 1998, 15, 48-60.	1.4	30
101	Exploring spatiotemporal patterns in early stages of primary succession on former lignite mining sites. Journal of Vegetation Science, 2008, 19, 267-276.	2.2	30
102	Assessing spatiotemporal predator–prey patterns in heterogeneous habitats. Basic and Applied Ecology, 2010, 11, 486-494.	2.7	30
103	Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka. Ecology, 2015, 96, 1823-1834.	3.2	30
104	Nonrandom seedling establishment corresponds with distanceâ€dependent decline in mycorrhizal abundance in two terrestrial orchids. New Phytologist, 2016, 211, 255-264.	7.3	27
105	Simulated plant population responses to small-scale disturbances in semi-arid shrublands. Journal of Vegetation Science, 1997, 8, 163-176.	2.2	26
106	Size dominance regulates tree spacing more than competition within height classes in tropical Cameroon. Journal of Tropical Ecology, 2011, 27, 93-102.	1.1	26
107	Clarifying misunderstandings regarding vegetation selfâ€organisation and spatial patterns of fairy circles in <scp>N</scp> amibia: a response to recent termite hypotheses. Ecological Entomology, 2015, 40, 669-675.	2.2	25
108	Linking trait similarity to interspecific spatial associations in a moist tropical forest. Journal of Vegetation Science, 2015, 26, 1068-1079.	2.2	25

#	Article	IF	CITATIONS
109	Small-scale spatial structure within patterns of seed dispersal. Oecologia, 2008, 158, 437-448.	2.0	24
110	Grazing Impacts in Vegetated Dune Fields: Predictions From Spatial Pattern Analysis. Rangeland Ecology and Management, 2008, 61, 194-203.	2.3	24
111	Understanding the longâ€ŧerm spatial dynamics of a semiarid grassâ€shrub steppe through inverse parameterization for simulation models. Oikos, 2012, 121, 848-861.	2.7	24
112	Spatial patterns of seedling-adult associations in a temperate forest community. Forest Ecology and Management, 2013, 296, 74-80.	3.2	24
113	How can we bring together empiricists and modellers in functional biodiversity research?. Basic and Applied Ecology, 2013, 14, 93-101.	2.7	24
114	Predicting forest management effects on oak–rodent mutualisms. Oikos, 2016, 125, 1445-1457.	2.7	24
115	Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?. Global Ecology and Biogeography, 2016, 25, 575-585.	5.8	24
116	Consequences of spatial patterns for coexistence in species-rich plant communities. Nature Ecology and Evolution, 2021, 5, 965-973.	7.8	24
117	Analyzing the Spatial Structure of Broughtonia cubensis (Orchidaceae) Populations in the Dry Forests of Guanahacabibes, Cuba. Biotropica, 2011, 43, 173-182.	1.6	23
118	Competition for light and persistence of rare lightâ€demanding species within treeâ€fall gaps in a moist tropical forest. Ecology, 2020, 101, e03034.	3.2	23
119	Colonization in Mediterranean oldâ€fields: the role of dispersal and plant–plant interactions. Journal of Vegetation Science, 2017, 28, 627-638.	2.2	22
120	Combined effects of grazing management and climate on semiâ€arid steppes: Hysteresis dynamics prevent recovery of degraded rangelands. Journal of Applied Ecology, 2019, 56, 2155-2165.	4.0	22
121	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 2019, 100, e02591.	3.2	22
122	Measurement and analysis of interspecific spatial associations as a facet of biodiversity. Ecological Monographs, 2021, 91, e01452.	5.4	22
123	Individual-based movement models reveals sex-biased effects of landscape fragmentation on animal movement. Ecosphere, 2012, 3, art64.	2.2	21
124	Spatioâ€ŧemporal Analysis of the Effects of Hurricane Ivan on Two Contrasting Epiphytic Orchid Species in Guanahacabibes, Cuba. Biotropica, 2013, 45, 441-449.	1.6	21
125	Spatial patterns of local species richness reveal importance of frugivores for tropical forest diversity. Journal of Ecology, 2018, 106, 925-935.	4.0	21
126	A complex network of interactions controls coexistence and relative abundances in Patagonian grassâ€shrub steppes. Journal of Ecology, 2014, 102, 776-788.	4.0	20

#	Article	IF	CITATIONS
127	The Relative Importance of Janzen-Connell Effects in Influencing the Spatial Patterns at the Gutianshan Subtropical Forest. PLoS ONE, 2013, 8, e74560.	2.5	19
128	A neutral vs. non-neutral parametrizations of a physiological forest gap model. Ecological Modelling, 2014, 288, 94-102.	2.5	19
129	Spatial structure and soil properties shape local community structure of plant-parasitic nematodes in cultivated olive trees in southern Spain. Agriculture, Ecosystems and Environment, 2020, 287, 106688.	5.3	18
130	Fireâ€mediated interactions between shrubs in a South American temperate savannah. Oikos, 2009, 118, 1383-1395.	2.7	17
131	Individual species–area relationships and spatial patterns of species diversity in a Great Basin, semiâ€∎rid shrubland. Ecography, 2012, 35, 341-347.	4.5	17
132	Quantifying spatial phylogenetic structures of fully stemâ€mapped plant communities. Methods in Ecology and Evolution, 2013, 4, 1132-1141.	5.2	17
133	Long-term dynamics in arid and semiarid ecosystems – synthesis of a workshop. Plant Ecology, 2000, 150, 3-6.	1.6	16
134	Dispersal limitation and spatial scale affect model based projections of <i>Pinus uncinata</i> response to climate change in the <scp>P</scp> yrenees. Global Change Biology, 2012, 18, 1714-1724.	9.5	16
135	Spatial patterns of an endemic Mediterranean palm recolonizing old fields. Ecology and Evolution, 2016, 6, 8556-8568.	1.9	16
136	Intertwined effects of defaunation, increased tree mortality and density compensation on seed dispersal. Ecography, 2020, 43, 1352-1363.	4.5	16
137	Spatial patterns of sapling mortality in a moist tropical forest: consistency with total densityâ€dependent effects. Oikos, 2016, 125, 872-882.	2.7	14
138	Adult proximity and frugivore's activity structure the spatial pattern in an endangered plant. Functional Ecology, 2012, 26, 1221-1229.	3.6	13
139	Foraging in a changing environment: habitat shifts of an oceanic predator over the last half century. Ecography, 2013, 36, 57-67.	4.5	13
140	Spatio-temporal arrangement of Chamaerops humilis inflorescences and occupancy patterns by its nursery pollinator, Derelomus chamaeropsis. Annals of Botany, 2018, 121, 471-482.	2.9	13
141	Legacy effects of seed dispersal mechanisms shape the spatial interaction network of plant species in Mediterranean forests. Journal of Ecology, 2021, 109, 3670-3684.	4.0	13
142	Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests. PLoS ONE, 2016, 11, e0156913.	2.5	12
143	A low cost approach to estimate demographic rates using inverse modeling. Biological Conservation, 2019, 237, 358-365.	4.1	12
144	Marked point pattern analysis on genetic paternity data for uncertainty assessment of pollen dispersal kernels. Journal of Ecology, 2012, 100, 264-276.	4.0	11

#	Article	IF	CITATIONS
145	Nonparametric upscaling of stochastic simulation models using transition matrices. Methods in Ecology and Evolution, 2016, 7, 313-322.	5.2	11
146	Individual Species-Area Relationship of Woody Plant Communities in a Heterogeneous Subtropical Monsoon Rainforest. PLoS ONE, 2015, 10, e0124539.	2.5	11
147	Assessing the Risk of Extinction for the Brown Bear (Ursus arctos) in the Cordillera Cantabrica, Spain. Ecological Monographs, 1998, 68, 539.	5.4	10
148	Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests. BMC Ecology, 2012, 12, 3.	3.0	10
149	Scaleâ€dependent effects of conspecific negative density dependence and immigration on biodiversity maintenance. Oikos, 2020, 129, 1072-1083.	2.7	10
150	Agriculture causes homogenization of plantâ€feeding nematode communities at the regional scale. Journal of Applied Ecology, 2021, 58, 2881-2891.	4.0	10
151	How Grazing Turns Rare Seedling Recruitment Events to Non-Events in Arid Environments. , 2001, , 197-207.		10
152	Dataset on the diversity of plant-parasitic nematodes in cultivated olive trees in southern Spain. Data in Brief, 2019, 27, 104658.	1.0	9
153	Assessment of the key evolutionary traits that prevent extinctions in human-altered habitats using a spatially explicit individual-based model. Ecological Modelling, 2020, 415, 108823.	2.5	9
154	Network science applied to forest megaplots: tropical tree species coexist in small-world networks. Scientific Reports, 2020, 10, 13198.	3.3	9
155	An analysis of forest biomass sampling strategies across scales. Biogeosciences, 2020, 17, 1673-1683.	3.3	8
156	Sperm storage reduces the strength of the mateâ€finding Allee effect. Ecology and Evolution, 2020, 10, 1938-1948.	1.9	8
157	A resprouter herb reduces negative density-dependent effects among neighboring seeders after fire. Acta Oecologica, 2012, 38, 17-23.	1.1	7
158	Phylogeny contributes more than site characteristics and traits to the spatial distribution pattern of tropical tree populations. Oikos, 2018, 127, 1368-1379.	2.7	7
159	Spatial distribution of communal nests in a colonial breeding bird: benefits without costs?. Austral Ecology, 2008, 33, 607-613.	1.5	6
160	Disturbance-dependent spatial distribution of sexes in a gynodioecious understory shrub. Basic and Applied Ecology, 2012, 13, 405-413.	2.7	6
161	Habitat filtering drives the local distribution of congeneric species in a Brazilian whiteâ€sand flooded tropical forest. Ecology and Evolution, 2021, 11, 1797-1813.	1.9	6
162	Problems seeded in the past: lagged effects of historical land-use changes can cause an extinction debt in long-lived species due to movement limitation. Landscape Ecology, 2022, 37, 1331-1346.	4.2	6

#	Article	IF	CITATIONS
163	Reply to Walsh et al.: Hexagonal patterns of Australian fairy circles develop without correlation to termitaria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5368-9.	7.1	5
164	Host-parasitoid models in temporally and spatially varying environment. Ecological Modelling, 1994, 75-76, 161-170.	2.5	3
165	Contrasting the ability of data to make inferences regarding dispersal: case study of the Red-cockaded woodpecker (Picoides borealis). Landscape Ecology, 2014, 29, 639-653.	4.2	2
166	Integrating Short- and Long-Range Processes into Models: The Emergence of Pattern. , 2014, , 141-167.		2
167	Ecological Consequences of Habitat Loss from a Population and Landscape Perspective. Conservation Biology, 2006, 20, 590-592.	4.7	0
168	Grazing Models. , 2008, , 1773-1782.		0
169	Arid Rangeland Management Supported by Dynamic Spatially Explicit Simulation Models. , 2001, , 229-240.		0
170	Assessment of Patterns in Ecogeomorphic Systems. , 2014, , 247-264.		0