List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4175900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Truncated (2/2) hemoglobin: Unconventional structures and functional roles in vivo and in human pathogenesis. Molecular Aspects of Medicine, 2022, 84, 101049.	6.4	5
2	The coâ€existence of cold activity and thermal stability in an Antarctic GH42 βâ€galactosidase relies on its hexameric quaternary arrangement. FEBS Journal, 2021, 288, 546-565.	4.7	31
3	Structural determinants for NFâ€Y subunit organization and NFâ€Y/DNA association in plants. Plant Journal, 2021, 105, 49-61.	5.7	36
4	Producing natural vanilla extract from green vanilla beans using a β-glucosidase from Alicyclobacillus acidiphilus. Journal of Biotechnology, 2021, 329, 21-28.	3.8	11
5	The activity and stability of a cold-active acylaminoacyl peptidase rely on its dimerization by domain swapping. International Journal of Biological Macromolecules, 2021, 181, 263-274.	7.5	5
6	The USR domain of USF1 mediates NF-Y interactions and cooperative DNA binding. International Journal of Biological Macromolecules, 2021, 193, 401-413.	7.5	0
7	Structural and Functional Characterization of the Globin-Coupled Sensors ofAzotobacter vinelandiiandBordetella pertussis. Antioxidants and Redox Signaling, 2020, 32, 378-395.	5.4	4
8	The structural bases for agonist diversity in an <i>Arabidopsis thaliana</i> glutamate receptor-like channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 752-760.	7.1	70
9	Structural and functional properties of Antarctic fish cytoglobins-1: Cold-reactivity in multi-ligand reactions. Computational and Structural Biotechnology Journal, 2020, 18, 2132-2144.	4.1	10
10	Structural Basis of Inhibition of the Pioneer Transcription Factor NF-Y by Suramin. Cells, 2020, 9, 2370.	4.1	8
11	Mycobacterial and Human Nitrobindins: Structure and Function. Antioxidants and Redox Signaling, 2020, 33, 229-246.	5.4	17
12	Saturn-Shaped Ice Burst Pattern and Fast Basal Binding of an Ice-Binding Protein from an Antarctic Bacterial Consortium. Langmuir, 2019, 35, 7337-7346.	3.5	12
13	The phosphorylatable Ser320 of NF‥A is involved in DNA binding of the NF‥ trimer. FASEB Journal, 2019, 33, 4790-4801.	0.5	4
14	Structure of a bacterial ice binding protein with two faces of interaction with ice. FEBS Journal, 2018, 285, 1653-1666.	4.7	21
15	Target highlights from the first postâ€₽SI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	2.6	11
16	Identification of Plasmodium berghei Oocyst Rupture Protein 2 (ORP2) domains involved in sporozoite egress from the oocyst. International Journal for Parasitology, 2018, 48, 1127-1136.	3.1	12
17	Fusicoccin Activates KAT1 Channels by Stabilizing their Interaction with 14-3-3- Proteins. Plant Cell, 2017, 29, tpc.00375.2017.	6.6	34
18	Crystal Structure of the Arabidopsis thaliana L1L/NF-YC3 Histone-fold Dimer Reveals Specificities of the LFC1 Family of NF-Y Subunits in Plants. Molecular Plant, 2017, 10, 645-648	8.3	48

#	Article	lF	CITATIONS
19	Structural determinants for NF-Y/DNA interaction at the CCAAT box. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 571-580.	1.9	47
20	The Nâ€ŧerminal preâ€A region of <i>MycobacteriumÂtuberculosis</i> 2/2HbN promotes <scp>NO</scp> â€dioxygenase activity. FEBS Journal, 2016, 283, 305-322.	4.7	10
21	Structure-Function Relationships in l-Amino Acid Deaminase, a Flavoprotein Belonging to a Novel Class of Biotechnologically Relevant Enzymes. Journal of Biological Chemistry, 2016, 291, 10457-10475.	3.4	46
22	A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation. FEBS Journal, 2016, 283, 4310-4324.	4.7	19
23	A redox signalling globin is essential for reproduction in Caenorhabditis elegans. Nature Communications, 2015, 6, 8782.	12.8	42
24	Structural flexibility of the heme cavity in the coldâ€adapted truncated hemoglobin from the Antarctic marine bacterium <i>PseudoalteromonasÂhaloplanktis </i> <scp>TAC</scp> 125. FEBS Journal, 2015, 282, 2948-2965.	4.7	24
25	Structural Biology of Bacterial Haemophores. Advances in Microbial Physiology, 2015, 67, 127-176.	2.4	11
26	Structural Bases for the Regulation of CO Binding in the Archaeal Protoglobin from Methanosarcina acetivorans. PLoS ONE, 2015, 10, e0125959.	2.5	3
27	Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin. PLoS Neglected Tropical Diseases, 2015, 9, e0003917.	3.0	40
28	Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from <i>PseudomonasÂaeruginosa</i> . FEBS Journal, 2015, 282, 1980-1997.	4.7	31
29	Synchrotron Radiation and Bio-crystallography. , 2015, , 615-639.		0
30	Aminoacetone oxidase from <i>Streptococcus oligofermentans</i> belongs to a new three-domain family of bacterial flavoproteins. Biochemical Journal, 2014, 464, 387-399.	3.7	13
31	Crystal structures of two Bacillus carboxylesterases with different enantioselectivities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 567-575.	2.3	20
32	Interactions of ataxin-3 with its molecular partners in the protein machinery that sorts protein aggregates to the aggresome. International Journal of Biochemistry and Cell Biology, 2014, 51, 58-64.	2.8	18
33	Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nature Chemical Biology, 2014, 10, 457-462.	8.0	50
34	A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie, 2014, 97, 49-59.	2.6	12
35	Functional and structural roles of the N-terminal extension in Methanosarcina acetivorans protoglobin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1813-1823.	2.3	11
36	The Diversity of 2/2 (Truncated) Globins. Advances in Microbial Physiology, 2013, 63, 49-78.	2.4	38

#	Article	IF	CITATIONS
37	Protoglobin. Advances in Microbial Physiology, 2013, 63, 79-96.	2.4	25
38	Non-covalent and covalent modifications modulate the reactivity of monomeric mammalian globins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1750-1756.	2.3	27
39	Reductive nitrosylation of Methanosarcina acetivorans protoglobin: A comparative study. Biochemical and Biophysical Research Communications, 2013, 430, 1301-1305.	2.1	16
40	Structural, Kinetic, and Pharmacodynamic Mechanisms of <scp>d</scp> -Amino Acid Oxidase Inhibition by Small Molecules. Journal of Medicinal Chemistry, 2013, 56, 3710-3724.	6.4	31
41	The H2A/H2B-like histone-fold domain proteins at the crossroad between chromatin and different DNA metabolisms. Transcription, 2013, 4, 114-119.	3.1	23
42	Sequence-Specific Transcription Factor NF-Y Displays Histone-like DNA Binding and H2B-like Ubiquitination. Cell, 2013, 152, 132-143.	28.9	249
43	Characterization of human DAAO variants potentially related to an increased risk of schizophrenia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 400-410.	3.8	26
44	One hundred years of X-ray diffraction, 50Âyears of structural biology. Rendiconti Lincei, 2013, 24, 93-99.	2.2	1
45	Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9794-9799.	7.1	37
46	The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains. Journal of Bacteriology, 2013, 195, 1100-1108.	2.2	90
47	CO Rebinding Kinetics and Molecular Dynamics Simulations Highlight Dynamic Regulation of Internal Cavities in Human Cytoglobin. PLoS ONE, 2013, 8, e49770.	2.5	28
48	Identification of the Molecular Site of Ivabradine Binding to HCN4 Channels. PLoS ONE, 2013, 8, e53132.	2.5	51
49	Structure and Haem-Distal Site Plasticity in Methanosarcina acetivorans Protoglobin. PLoS ONE, 2013, 8, e66144.	2.5	19
50	High Resolution Crystal Structures of the Cerebratulus lacteus Mini-Hb in the Unligated and Carbomonoxy States. International Journal of Molecular Sciences, 2012, 13, 8025-8037.	4.1	4
51	Determination of Ligand Pathways in Globins. Journal of Biological Chemistry, 2012, 287, 33163-33178.	3.4	34
52	Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin. PLoS ONE, 2012, 7, e33614.	2.5	13
53	Ligand Migration in Methanosarcina acetivorans Protoglobin: Effects of Ligand Binding and Dimeric Assembly. Journal of Physical Chemistry B, 2011, 115, 13771-13780.	2.6	31
54	Structural heterogeneity and ligand gating in ferric <i>methanosarcina acetivorans</i> protoglobin mutants. IUBMB Life, 2011, 63, 287-294.	3.4	15

#	Article	IF	CITATIONS
55	Structural characterization of a group II 2/2 hemoglobin from the plant pathogen Agrobacterium tumefaciens. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 810-816.	2.3	13
56	Ligand Migration in the Apolar Tunnel of Cerebratulus lacteus Mini-Hemoglobin. Journal of Biological Chemistry, 2011, 286, 5347-5358.	3.4	23
57	Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2011, 286, 44811-44820.	3.4	101
58	Globin-like proteins in Caenorhabditis elegans: in vivo localization, ligand binding and structural properties. BMC Biochemistry, 2010, 11, 17.	4.4	21
59	Probing the active site of the sugar isomerase domain from <i>E. coli</i> arabinoseâ€5â€phosphate isomerase via Xâ€ray crystallography. Protein Science, 2010, 19, 2430-2439.	7.6	19
60	Role of Heme Distortion on Oxygen Affinity in Heme Proteins: The Protoglobin Case. Journal of Physical Chemistry B, 2010, 114, 8536-8543.	2.6	49
61	HisE11 and HisF8 Provide Bis-histidyl Heme Hexa-coordination in the Globin Domain of Geobacter sulfurreducens Globin-coupled Sensor. Journal of Molecular Biology, 2009, 386, 246-260.	4.2	47
62	CtBP1/BARS Gly172 → Glu mutant structure: Impairing NAD(H)-binding and dimerization. Biochemical and Biophysical Research Communications, 2009, 381, 70-74.	2.1	21
63	Hemoprotein timeâ€resolved Xâ€ray crystallography. IUBMB Life, 2008, 60, 154-158.	3.4	7
64	Ferrous <i>Campylobacter jejuni</i> truncated hemoglobin P displays an extremely high reactivity for cyanide – a comparative study. FEBS Journal, 2008, 275, 633-645.	4.7	24
65	Archaeal protoglobin structure indicates new ligand diffusion paths and modulation of haemâ€reactivity. EMBO Reports, 2008, 9, 157-163.	4.5	43
66	Mapping Hemeâ€Ligand Tunnels in Group I Truncated(2/2) Hemoglobins. Methods in Enzymology, 2008, 436, 303-315.	1.0	17
67	The hemoglobins of the trematodes <i>Fasciola hepatica</i> and <i>Paramphistomum epiclitum</i> : A molecular biological, physicoâ€chemical, kinetic, and vaccination study. Protein Science, 2008, 17, 1653-1662.	7.6	11
68	Dissecting the Structural Determinants of the Interaction between the Human Cytomegalovirus UL18 Protein and the CD85j Immune Receptor. Journal of Immunology, 2008, 180, 957-968.	0.8	10
69	The Apolar Channel in Cerebratulus lacteus Hemoglobin Is the Route for O2 Entry and Exit. Journal of Biological Chemistry, 2008, 283, 35689-35702.	3.4	31
70	A Crystallographer's Perspective on the 2/2Hb Family. , 2008, , 17-30.		0
71	Protein fold and structure in the truncated (2/2) globin family. Gene, 2007, 398, 2-11.	2.2	66
72	Structural Basis of Phospholipase Activity of Staphylococcus hyicus lipase. Journal of Molecular Biology, 2007, 371, 447-456.	4.2	60

#	Article	IF	CITATIONS
73	Protein structure in the truncated (2/2) hemoglobin family. IUBMB Life, 2007, 59, 535-541.	3.4	15
74	The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Science, 2006, 15, 1042-1050.	7.6	44
75	Structural Determinants in the Group III Truncated Hemoglobin from Campylobacter jejuni. Journal of Biological Chemistry, 2006, 281, 37803-37812.	3.4	54
76	Role of the C-Terminal Binding Protein PXDLS Motif Binding Cleft in Protein Interactions and Transcriptional Repression. Molecular and Cellular Biology, 2006, 26, 8202-8213.	2.3	53
77	Specific Recognition of ZNF217 and Other Zinc Finger Proteins at a Surface Groove of C-Terminal Binding Proteins. Molecular and Cellular Biology, 2006, 26, 8159-8172.	2.3	74
78	Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins. Journal of Inorganic Biochemistry, 2005, 99, 97-109.	3.5	117
79	Modulation of oxygen binding to insect hemoglobins: The structure of hemoglobin from the botflyGasterophilus intestinalis. Protein Science, 2005, 14, 3057-3063.	7.6	15
80	Two distinct heme distal site states define Cerebratulus lacteus mini-hemoglobin oxygen affinity. Proteins: Structure, Function and Bioinformatics, 2005, 62, 641-648.	2.6	21
81	Bishistidyl Heme Hexacoordination, a Key Structural Property in Drosophila melanogaster Hemoglobin. Journal of Biological Chemistry, 2005, 280, 27222-27229.	3.4	48
82	Thr-E11 Regulates O2 Affinity in Cerebratulus lacteus Mini-hemoglobin. Journal of Biological Chemistry, 2004, 279, 33662-33672.	3.4	38
83	Structureâ€Function Relationships in the Growing Hexaâ€Coordinate Hemoglobin Subâ€Family. IUBMB Life, 2004, 56, 643-651.	3.4	41
84	Reversible hexa―to pentaâ€coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin. IUBMB Life, 2004, 56, 657-664.	3.4	47
85	The human brain hexacoordinated neuroglobin three-dimensional structure. Micron, 2004, 35, 63-65.	2.2	30
86	Crystal structure of the glutaredoxin-like protein SH3BGRL3 at 1.6Ã resolution. Biochemical and Biophysical Research Communications, 2004, 318, 470-476.	2.1	14
87	Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. Journal of Clinical Investigation, 2004, 113, 1008-1016.	8.2	190
88	Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. Journal of Clinical Investigation, 2004, 113, 1008-1016.	8.2	28
89	CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO Journal, 2003, 22, 3122-3130.	7.8	144
90	Human Brain Neuroglobin Structure Reveals a Distinct Mode of Controlling Oxygen Affinity. Structure, 2003, 11, 1087-1095.	3.3	286

#	Article	IF	CITATIONS
91	The 109 Residue Nerve Tissue Minihemoglobin from Cerebratulus lacteus Highlights Striking Structural Plasticity of the α-Helical Globin Fold. Structure, 2002, 10, 725-735.	3.3	66
92	Nitrophorins: Lipocalin-based heme proteins transporting nitric oxide. Biochemistry and Molecular Biology Education, 2002, 30, 68-71.	1.2	12
93	Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS). Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1068-1070.	2.5	10
94	Human neuroglobin: crystals and preliminary X-ray diffraction analysis. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1848-1850.	2.5	13
95	Crystallization and preliminary X-ray analysis of neural haemoglobin from the nemertean wormCerebratulus lacteus. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1897-1899.	2.5	8
96	Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 1035-1042.	1.8	23
97	Directed evolution of an enantioselective lipase. Chemistry and Biology, 2000, 7, 709-718.	6.0	231
98	Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCl virulence gene 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 302, 465-478.	4.2	47
99	Crystal Structure of Pseudomonas aeruginosa Lipase in the Open Conformation. Journal of Biological Chemistry, 2000, 275, 31219-31225.	3.4	248
100	The X-ray Structure of Epoxide Hydrolase from Agrobacterium radiobacter AD1. Journal of Biological Chemistry, 1999, 274, 14579-14586.	3.4	160
101	α/β Hydrolase fold enzymes: the family keeps growing. Current Opinion in Structural Biology, 1999, 9, 732-737.	5.7	752
102	Mutation of Tyrosine Residues Involved in the Alkylation Half Reaction of Epoxide Hydrolase from Agrobacterium radiobacter AD1 Results in Improved Enantioselectivity. Journal of the American Chemical Society, 1999, 121, 7417-7418.	13.7	65
103	BEAMS (BEAds Modelling System): a set of computer programs for the generation, the visualization and the computation of the hydrodynamic and conformational properties of bead models of proteins. European Biophysics Journal, 1997, 25, 373-384.	2.2	46
104	Human α-Thrombin Inhibition by the Active Site Titrant Nα-(N,N-dimethylcarbamoyl)-α-azalysine p-nitrophenyl ester: A Comparative Kinetic and X-ray Crystallographic Study. Journal of Molecular Biology, 1996, 258, 851-859.	4.2	17
105	Reptile Heme Protein Structure: X-ray Crystallographic Study of the Aquo-met and Cyano-met Derivatives of the Loggerhead Sea Turle (Caretta caretta) Myoglobin at 2.0 Ã Resolution. Journal of Molecular Biology, 1995, 247, 459-465.	4.2	26