Nan Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4174725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310.	16.0	285
2	Diffusiophoretic Focusing of Suspended Colloids. Physical Review Letters, 2016, 117, 258001.	7.8	69
3	Direct Measurements of Colloidal Solvophoresis under Imposed Solvent and Solute Gradients. Langmuir, 2015, 31, 4402-4410.	3.5	56
4	Ultrafast multiplexed detection of SARS-CoV-2 RNA using a rapid droplet digital PCR system. Biosensors and Bioelectronics, 2021, 188, 113282.	10.1	52
5	Integrated microfluidic system for isolating exosome and analyzing protein marker PD-L1. Biosensors and Bioelectronics, 2022, 204, 113879.	10.1	28
6	Porous carbon with uniformly distributed cobalt nanoparticles derived from ZIF-67 for efficient removal of vapor elemental mercury: A combined experimental and DFT study. Chemical Engineering Journal, 2022, 428, 132095.	12.7	26
7	A two-step strategy for delivering particles to targets hidden within microfabricated porous media. Science Advances, 2021, 7, .	10.3	16
8	Droplet migration into dead-end channels at high salinity enhanced by micelle gradients of a zwitterionic surfactant. Physical Review Fluids, 2021, 6, .	2.5	14
9	Mercury speciation and size-specific distribution in filterable and condensable particulate matter from coal combustion. Science of the Total Environment, 2021, 787, 147597.	8.0	14
10	Enhancing the interaction between Mn and Ce oxides supported on fly ash with organic acid ligands interface modification for effective VOC removal: A combined experimental and DFTÂ+ÂU study. Fuel, 2022, 313, 123043.	6.4	14
11	Entropic stochastic resonance enables trapping under periodic confinement: A Brownian-dynamics study. Physical Review E, 2014, 89, 012138.	2.1	13
12	Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study. Environmental Pollution, 2022, 302, 119107.	7.5	11
13	Significant enhancement of VOCs conversion by facile mechanochemistry coupled MnO2 modified fly ash: Mechanism and application. Fuel, 2021, 304, 121443.	6.4	9
14	Removal of elementary mercury by solid sorbents at different temperatures: Variation of the desorption activation energy through thermal desorption analysis. Fuel, 2022, 307, 121889.	6.4	9
15	Tailoring the Nanoporous Architecture of Hydrogels to Exploit Entropic Trapping. Physical Review Letters, 2010, 105, 108101.	7.8	8
16	Investigating the effect of flue gas temperature and excess air coefficient on the size distribution of condensable particulate matters. Fuel, 2021, 298, 120866.	6.4	8
17	Microfluidic device for chemical and mechanical manipulation of suspended cells. Journal Physics D: Applied Physics, 2018, 51, 045403.	2.8	7
18	Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion. Environmental Science and Pollution Research, 2022, 29, 44709-44722.	5.3	7

Nan Shi

#	Article	IF	CITATIONS
19	An Entropic Force Microscope Enables Nanoâ€Scale Conformational Probing of Biomolecules. Small, 2014, 10, 2553-2557.	10.0	6
20	Temperature dependence of diffusiophoresis <i>via</i> a novel microfluidic approach. Lab on A Chip, 2022, 22, 1980-1988.	6.0	5
21	Immobilization of gaseous elemental mercury by Ag nanoparticles: A combined DFT and experimental study. Applied Surface Science, 2022, 591, 153217.	6.1	4
22	Using Microchip Gel Electrophoresis to Probe DNA–Drug Binding Interactions. Methods in Molecular Biology, 2014, 1094, 13-24.	0.9	3
23	Noiseâ€enhanced gel electrophoresis. Electrophoresis, 2014, 35, 1758-1765.	2.4	1
24	Tunable <i>in-situ</i> electro-polymerization of hydrogel films for microchip-based bioanalysis. Biomicrofluidics, 2016, 10, 033103.	2.4	1
25	Autonomous Reservoir Nano-Agents. , 2019, , .		1