
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4174160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nature Neuroscience, 2022, 25, 555-560.	14.8	96
2	Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nature Aging, 2022, 2, 214-223.	11.6	41
3	Immune response after central nervous system injury. Seminars in Immunology, 2022, 59, 101629.	5.6	19
4	Functional characterization of the dural sinuses as a neuroimmune interface. Cell, 2021, 184, 1000-1016.e27.	28.9	299
5	Neuromodulation by the immune system: a focus on cytokines. Nature Reviews Immunology, 2021, 21, 526-541.	22.7	164
6	Meningeal lymphatics affect microglia responses and anti-AÎ ² immunotherapy. Nature, 2021, 593, 255-260.	27.8	179
7	Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Science Advances, 2021, 7, .	10.3	73
8	Cerebrovascular Anomalies: Perspectives From Immunology and Cerebrospinal Fluid Flow. Circulation Research, 2021, 129, 174-194.	4.5	13
9	Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science, 2021, 373, .	12.6	282
10	Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science, 2021, 373,	12.6	218
11	Vascular rejuvenation is geroprotective. Science, 2021, 373, 490-491.	12.6	8
12	<i>JEM</i> career launchpad. Journal of Experimental Medicine, 2021, 218, .	8.5	0
13	GABAergic neuronal IL-4R mediates T cell effect on memory. Neuron, 2021, 109, 3609-3618.e9.	8.1	46
14	The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell, 2020, 182, 270-296.	28.9	352
15	Meningeal γδT cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nature Immunology, 2020, 21, 1421-1429.	14.5	225
16	Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nature Communications, 2020, 11, 4524.	12.8	174
17	Meningeal lymphatics "drain―brain tumors. Cell Research, 2020, 30, 191-192.	12.0	11
18	Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease. Annual Review of Immunology, 2020, 38, 597-620.	21.8	199

#	Article	IF	CITATIONS
19	Meningeal Lymphatics: From Anatomy to Central Nervous System Immune Surveillance. Journal of Immunology, 2020, 204, 286-293.	0.8	69
20	Old T Cells Interfer(on) with Neurogenesis. Trends in Immunology, 2019, 40, 783-785.	6.8	1
21	Smelling Danger: Olfactory Stem Cells Control Immune Defense during Chronic Inflammation. Cell Stem Cell, 2019, 25, 449-451.	11.1	7
22	Lymphatic Cannulation for Lymph Sampling and Molecular Delivery. Journal of Immunology, 2019, 203, 2339-2350.	0.8	18
23	A (delayed) history of the brain lymphatic system. Nature Medicine, 2019, 25, 538-540.	30.7	65
24	Bypassing the blood-brain barrier. Science, 2019, 366, 1448-1449.	12.6	55
25	Immune cells and CNS physiology: Microglia and beyond. Journal of Experimental Medicine, 2019, 216, 60-70.	8.5	165
26	Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Science Translational Medicine, 2018, 10, .	12.4	49
27	Meningeal Whole Mount Preparation and Characterization of Neural Cells by Flow Cytometry. Current Protocols in Immunology, 2018, 121, e50.	3.6	48
28	Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. Journal of Experimental Medicine, 2018, 215, 1627-1647.	8.5	281
29	Sex, Gut, and Microglia. Developmental Cell, 2018, 44, 137-138.	7.0	6
30	High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity, 2018, 48, 380-395.e6.	14.3	638
31	Immune system: The "seventh sense― Journal of Experimental Medicine, 2018, 215, 397-398.	8.5	47
32	The central nervous system: privileged by immune connections. Nature Reviews Immunology, 2018, 18, 83-84.	22.7	34
33	Nonlinear Shape Regression for Filtering Segmentation Results from Calcium Imaging. , 2018, , .		0
34	Morphological and Functional Analysis of CNS-Associated Lymphatics. Methods in Molecular Biology, 2018, 1846, 141-151.	0.9	6
35	The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron, 2018, 100, 375-388.	8.1	306
36	CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature Neuroscience, 2018, 21, 1380-1391.	14.8	579

#	Article	IF	CITATIONS
37	Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. Journal of Experimental Medicine, 2018, 215, 1789-1801.	8.5	85
38	Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature, 2018, 560, 185-191.	27.8	839
39	Quand l'immunité monte à la tête. , 2018, Nº 104, 18-25.		0
40	Central Nervous System: (Immunological) Ivory Tower or Not?. Neuropsychopharmacology, 2017, 42, 28-35.	5.4	30
41	Microbiota alteration is associated with the development of stress-induced despair behavior. Scientific Reports, 2017, 7, 43859.	3.3	259
42	How and why do T cells and their derived cytokines affect the injured and healthy brain?. Nature Reviews Neuroscience, 2017, 18, 375-384.	10.2	156
43	DAMed in (Trem) 2 Steps. Cell, 2017, 169, 1172-1174.	28.9	7
44	Myeloid Cells in the Central Nervous System. Immunity, 2017, 46, 943-956.	14.3	259
45	Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. Journal of Experimental Medicine, 2017, 214, 285-296.	8.5	98
46	Development and Characterization of A Novel Prox1-EGFP Lymphatic and Schlemm's Canal Reporter Rat. Scientific Reports, 2017, 7, 5577.	3.3	45
47	Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. ELife, 2017, 6, .	6.0	403
48	Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. Journal of Clinical Investigation, 2017, 127, 3210-3219.	8.2	436
49	Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice. JCI Insight, 2017, 2, e88257.	5.0	12
50	Shedding light on IL-33 in the eye. Journal of Experimental Medicine, 2016, 213, 141-141.	8.5	2
51	Bugs and Brain: How Infection Makes You Feel Blue. Immunity, 2016, 44, 718-720.	14.3	10
52	Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease?. Neuron, 2016, 91, 957-973.	8.1	123
53	Multifaceted interactions between adaptive immunity and the central nervous system. Science, 2016, 353, 766-771.	12.6	282
54	How Do Meningeal Lymphatic Vessels Drain the CNS?. Trends in Neurosciences, 2016, 39, 581-586.	8.6	143

#	Article	IF	CITATIONS
55	Unexpected role of interferon-Î ³ in regulating neuronal connectivity and social behaviour. Nature, 2016, 535, 425-429.	27.8	507
56	Unexpected cellular players in Rett syndrome pathology. Neurobiology of Disease, 2016, 92, 64-71.	4.4	26
57	Natural killers in the brain's nursery. Nature Neuroscience, 2016, 19, 176-177.	14.8	0
58	Understanding the Role of T Cells in CNS Homeostasis. Trends in Immunology, 2016, 37, 154-165.	6.8	125
59	Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523, 337-341.	27.8	3,173
60	The Glia-Derived Alarmin IL-33 Orchestrates the Immune Response and Promotes Recovery following CNS Injury. Neuron, 2015, 85, 703-709.	8.1	272
61	Breaking bad blood: β2-microglobulin as a pro-aging factor in blood. Nature Medicine, 2015, 21, 844-845.	30.7	8
62	Dealing with Danger in the CNS: The Response of the Immune System to Injury. Neuron, 2015, 87, 47-62.	8.1	252
63	Brainless immunity no more. Nature Immunology, 2015, 16, 440-441.	14.5	3
64	Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli. Immunity, 2015, 42, 679-691.	14.3	157
65	Revisiting the Mechanisms of CNS Immune Privilege. Trends in Immunology, 2015, 36, 569-577.	6.8	515
66	Interactions of innate and adaptive immunity in brain development and function. Brain Research, 2015, 1617, 18-27.	2.2	169
67	MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. Journal of Clinical Investigation, 2015, 125, 699-714.	8.2	161
68	Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain, Behavior, and Immunity, 2014, 35, 58-63.	4.1	107
69	Regulatory T Cells in Central Nervous System Injury: A Double-Edged Sword. Journal of Immunology, 2014, 193, 5013-5022.	0.8	74
70	T cells in the central nervous system: messengers of destruction or purveyors of protection?. Immunology, 2014, 141, 340-344.	4.4	44
71	Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathologica, 2014, 128, 333-345.	7.7	64
72	Learning and memory … and the immune system. Learning and Memory, 2013, 20, 601-606.	1.3	148

#	Article	IF	CITATIONS
73	How Do Immune Cells Support and Shape the Brain in Health, Disease, and Aging?. Journal of Neuroscience, 2013, 33, 17587-17596.	3.6	236
74	Chronic mild stress eliminates the neuroprotective effect of Copaxone after CNS injury. Brain, Behavior, and Immunity, 2013, 31, 177-182.	4.1	9
75	The role of microglia in brain maintenance: implications for Rett syndrome. Trends in Immunology, 2013, 34, 144-150.	6.8	81
76	Microglia – the brain's busy bees. F1000prime Reports, 2013, 5, 53.	5.9	28
77	IL-4 in the Brain: A Cytokine To Remember. Journal of Immunology, 2012, 189, 4213-4219.	0.8	446
78	Pro-cognitive properties of T cells. Nature Reviews Immunology, 2012, 12, 663-669.	22.7	216
79	Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 2012, 484, 105-109.	27.8	547
80	Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain, Behavior, and Immunity, 2011, 25, 379-385.	4.1	82
81	A conceptual revolution in the relationships between the brain and immunity. Brain, Behavior, and Immunity, 2011, 25, 817-819.	4.1	68
82	Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends in Molecular Medicine, 2011, 17, 541-547.	6.7	47
83	Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nature Cell Biology, 2011, 13, 1076-1083.	10.3	148
84	Thrombospondin 1—a key astrocyteâ€derived neurogenic factor. FASEB Journal, 2010, 24, 1925-1934.	0.5	96
85	Regulation of learning and memory by meningeal immunity: a key role for IL-4. Journal of Experimental Medicine, 2010, 207, 1067-1080.	8.5	640
86	Extracellular redox modulation by regulatory T cells. Nature Chemical Biology, 2009, 5, 721-723.	8.0	129
87	IFNâ€Î³ and ILâ€4 differentially shape metabolic responses and neuroprotective phenotype of astrocytes. Journal of Neurochemistry, 2009, 108, 1155-1166.	3.9	42
88	Immunity and cognition: what do age-related dementia, HIV-dementia and â€~chemo-brain' have in common?. Trends in Immunology, 2008, 29, 455-463.	6.8	82
89	Toll-like receptors: roles in neuroprotection?. Trends in Neurosciences, 2008, 31, 176-182.	8.6	76
90	Adaptive immunity affects learning behavior in mice. Brain, Behavior, and Immunity, 2008, 22, 861-869.	4.1	191

#	Article	IF	CITATIONS
91	Neuroprotective Immunity: T Cell-Derived Glutamate Endows Astrocytes with a Neuroprotective Phenotype. Journal of Immunology, 2008, 180, 3866-3873.	0.8	103
92	Comparative Analysis of Selenocysteine Machinery and Selenoproteome Gene Expression in Mouse Brain Identifies Neurons as Key Functional Sites of Selenium in Mammals. Journal of Biological Chemistry, 2008, 283, 2427-2438.	3.4	151
93	Cytokine-Mediated Inhibition of Fibrillar Amyloid-β Peptide Degradation by Human Mononuclear Phagocytes. Journal of Immunology, 2008, 181, 3877-3886.	0.8	86
94	A Novel Immune-Based Therapy for Stroke Induces Neuroprotection and Supports Neurogenesis. Stroke, 2007, 38, 774-782.	2.0	68
95	T cell independent mechanism for copolymerâ€lâ€induced neuroprotection. European Journal of Immunology, 2007, 37, 3143-3154.	2.9	62
96	Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nature Neuroscience, 2006, 9, 268-275.	14.8	1,072
97	Loss of autoimmune T cells correlates with brain diseases: possible implications for schizophrenia?. Trends in Molecular Medicine, 2006, 12, 107-112.	6.7	30
98	Debate: "ls Increasing Neuroinflammation Beneficial for Neural Repair?― Journal of NeuroImmune Pharmacology, 2006, 1, 195-211.	4.1	63
99	Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. Journal of Neurobiology, 2006, 66, 552-563.	3.6	155
100	Therapeutic T Cell-Based Vaccination for Neurodegenerative Disorders: The Role of CD4+CD25+Regulatory T Cells. Annals of the New York Academy of Sciences, 2005, 1051, 701-708.	3.8	29
101	Controlled Autoimmunity in CNS Maintenance and Repair: Naturally Occurring CD4+CD25+ Regulatory T-Cells at the Crossroads of Health and Disease. NeuroMolecular Medicine, 2005, 7, 197-206.	3.4	38
102	Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotoxicity Research, 2005, 8, 25-50.	2.7	66
103	Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. Journal of the Neurological Sciences, 2005, 233, 163-166.	0.6	104
104	Dual effect of CD4 ⁺ CD25 ⁺ regulatory T cells in neurodegeneration: A dialogue with microglia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14663-14669.	7.1	156
105	Dopamine, through the Extracellular Signal-Regulated Kinase Pathway, Downregulates CD4+CD25+ Regulatory T-Cell Activity: Implications for Neurodegeneration. Journal of Neuroscience, 2004, 24, 6133-6143.	3.6	176
106	T cell deficiency leads to cognitive dysfunction: Implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8180-8185.	7.1	425
107	Low-dose gamma-irradiation promotes survival of injured neurons in the central nervous system via homeostasis-driven proliferation of T cells. European Journal of Neuroscience, 2004, 19, 1191-1198.	2.6	64
108	Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. Journal of Neuroimmunology, 2004, 146, 84-93.	2.3	134

#	Article	IF	CITATIONS
109	Vaccination with autoantigen protects against aggregated ?-amyloid and glutamate toxicity by controlling microglia: effect of CD4+CD25+ T?cells. European Journal of Immunology, 2004, 34, 3434-3445.	2.9	68
110	Therapeutic Vaccination for Closed Head Injury. Journal of Neurotrauma, 2003, 20, 559-569.	3.4	49
111	Neuroprotective autoimmunity: Naturally occurring CD4 ⁺ CD25 ⁺ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15620-15625.	7.1	257
112	Multiple Sclerosis as a By-Product of the Failure to Sustain Protective Autoimmunity: A Paradigm Shift. Neuroscientist, 2002, 8, 405-413.	3.5	45
113	Autoimmunity on alert: naturally occurring regulatory CD4+CD25+ T cells as part of the evolutionary compromise between a †need' and a †risk'. Trends in Immunology, 2002, 23, 530-534.	6.8	100
114	Dual action of glatiramer acetate (Cop-1) in the treatment of CNS autoimmune and neurodegenerative disorders. Trends in Molecular Medicine, 2002, 8, 319-323.	6.7	83
115	Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. Journal of Neuroimmunology, 2002, 130, 78-85.	2.3	132
116	Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Investigative Ophthalmology and Visual Science, 2002, 43, 2648-53.	3.3	63
117	Protective autoimmunity: regulation and prospects for vaccination after brain and spinal cord injuries. Trends in Molecular Medicine, 2001, 7, 252-258.	6.7	153
118	Neuronal Survival after CNS Insult Is Determined by a Genetically Encoded Autoimmune Response. Journal of Neuroscience, 2001, 21, 4564-4571.	3.6	220
119	Physical and Functional Interaction between p53 and the Werner's Syndrome Protein. Journal of Biological Chemistry, 1999, 274, 29463-29469.	3.4	170