
Iannis E Adamopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4171212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	erlack 10	Tf 50742
2	Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Research and Therapy, 2010, 12, R29.	3.5	242
3	The Implication of Vitamin D and Autoimmunity: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2013, 45, 217-226.	6.5	229
4	The critical role of toll-like receptors — From microbial recognition to autoimmunity: A comprehensive review. Autoimmunity Reviews, 2016, 15, 1-8.	5.8	226
5	IL-23 Is Critical for Induction of Arthritis, Osteoclast Formation, and Maintenance of Bone Mass. Journal of Immunology, 2011, 187, 951-959.	0.8	176
6	The IL-23/IL-17 axis in psoriatic arthritis. Autoimmunity Reviews, 2014, 13, 496-502.	5.8	132
7	Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nature Reviews Rheumatology, 2015, 11, 189-194.	8.0	104
8	Autophagy and autoimmunity. Clinical Immunology, 2017, 176, 55-62.	3.2	96
9	Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rî²1. Immunity, 2018, 48, 45-58.e6.	14.3	95
10	In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials, 2006, 27, 4557-4565.	11.4	94
11	Inflammation in bone physiology and pathology. Current Opinion in Rheumatology, 2018, 30, 59-64.	4.3	94
12	LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis and Rheumatism, 2006, 54, 1451-1462.	6.7	89
13	Synovial fluid macrophages are capable of osteoclast formation and resorption. Journal of Pathology, 2006, 208, 35-43.	4.5	84
14	Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. Journal of Experimental Medicine, 2010, 207, 579-589.	8.5	80
15	IL-17A gene transfer induces bone loss and epidermal hyperplasia associated with psoriatic arthritis. Annals of the Rheumatic Diseases, 2015, 74, 1284-1292.	0.9	76
16	Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nature Communications, 2014, 5, 4692.	12.8	74
17	Axial spondyloarthritis: new advances in diagnosis and management. BMJ, The, 2021, 372, m4447.	6.0	71
18	Immune regulation of bone loss by Th17 cells. Arthritis Research and Therapy, 2008, 10, 225.	3.5	68

IANNIS E ADAMOPOULOS

#	Article	IF	CITATIONS
19	Antiâ€kelchâ€like 12 and antiâ€hexokinase 1: novel autoantibodies in primary biliary cirrhosis. Liver International, 2015, 35, 642-651.	3.9	66
20	Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nature Communications, 2020, 11, 2859.	12.8	59
21	Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity, 2011, 44, 243-252.	2.6	49
22	Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochemical and Biophysical Research Communications, 2006, 350, 478-483.	2.1	45
23	Concise Review: Stem Cells in Osteoimmunology. Stem Cells, 2017, 35, 1461-1467.	3.2	43
24	Fine mapping of the MHC Class III region demonstrates association of AIF1 and rheumatoid arthritis. Rheumatology, 2008, 47, 1761-1767.	1.9	39
25	Crosstalk among IL-23 and DNAX Activating Protein of 12 kDa–Dependent Pathways Promotes Osteoclastogenesis. Journal of Immunology, 2015, 194, 316-324.	0.8	38
26	T Cell–Independent Mechanisms Associated with Neutrophil Extracellular Trap Formation and Selective Autophagy in IL-17A–Mediated Epidermal Hyperplasia. Journal of Immunology, 2016, 197, 4403-4412.	0.8	38
27	Cellular and humoral mechanisms of osteoclast formation in Ewing's sarcoma. British Journal of Cancer, 2007, 96, 1716-1722.	6.4	37
28	Critical Role of LTB4/BLT1 in IL-23–Induced Synovial Inflammation and Osteoclastogenesis via NF-κB. Journal of Immunology, 2017, 198, 452-460.	0.8	36
29	IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation. Journal of Clinical Investigation, 2021, 131, .	8.2	33
30	Targeting IL-17 in psoriatic arthritis. European Journal of Rheumatology, 2017, 4, 272-277.	0.6	32
31	Osteoclast differentiation and bone resorption in multicentric reticulohistiocytosis. Human Pathology, 2006, 37, 1176-1185.	2.0	31
32	Interactions of the Immune System with Skin and Bone Tissue in Psoriatic Arthritis: A Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 51, 87-99.	6.5	31
33	Ca2+-Dependent Regulation of NFATc1 via KCa3.1 in Inflammatory Osteoclastogenesis. Journal of Immunology, 2018, 200, 749-757.	0.8	30
34	The emerging role of Interleukin 27 in inflammatory arthritis and bone destruction. Cytokine and Growth Factor Reviews, 2013, 24, 115-121.	7.2	29
35	Interleukin-17 and Interleukin-23: A Narrative Review of Mechanisms of Action in Psoriasis and Associated Comorbidities. Dermatology and Therapy, 2021, 11, 385-400.	3.0	29
36	Meta-analysis of RNA sequencing datasets reveals an association between TRAJ23, psoriasis, and IL-17A. JCI Insight, 2018, 3, .	5.0	29

3

#	Article	IF	CITATIONS
37	Pathophysiology and inhibition of IL-23 signaling in psoriatic arthritis: A molecular insight. Clinical Immunology, 2019, 206, 15-22.	3.2	28
38	Macrophage-mediated biodegradation of poly(DL-lactide-co-glycolide)in vitro. Journal of Biomedical Materials Research - Part A, 2006, 79A, 582-590.	4.0	25
39	CD4+ virtual memory: Antigen-inexperienced T cells reside in the naÃ ⁻ ve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity. Journal of Autoimmunity, 2017, 77, 76-88.	6.5	24
40	Rheumatoid and pyrophosphate arthritis synovial fibroblasts induce osteoclastogenesis independently of RANKL, TNF and IL-6. Journal of Autoimmunity, 2012, 39, 369-376.	6.5	21
41	Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients. Clinical Immunology, 2019, 202, 1-10.	3.2	21
42	Stimulation of osteoclast formation by inflammatory synovial fluid. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 449, 69-77.	2.8	19
43	Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis. Journal of Autoimmunity, 2016, 73, 73-84.	6.5	18
44	Leukotriene B4 activates intracellular calcium and augments human osteoclastogenesis. Arthritis Research and Therapy, 2014, 16, 496.	3.5	17
45	γÎTCR regulates production of interleukin-27 by neutrophils and attenuates inflammatory arthritis. Scientific Reports, 2018, 8, 7590.	3.3	17
46	Peripheral Î ³ δT Cells Regulate Neutrophil Expansion and Recruitment in Experimental Psoriatic Arthritis. Arthritis and Rheumatology, 2022, 74, 1524-1534.	5.6	17
47	IL-23 Inhibition in Ankylosing Spondylitis: Where Did It Go Wrong?. Frontiers in Immunology, 2020, 11, 623874.	4.8	16
48	A site-specific map of the human plasma glycome and its age and gender-associated alterations. Scientific Reports, 2020, 10, 17505.	3.3	14
49	Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice. Osteoarthritis and Cartilage, 2021, 29, 68-77.	1.3	13
50	<scp>NKG</scp> 2C, <scp>HLA</scp> ‣ and their association with psoriasis. Experimental Dermatology, 2013, 22, 797-799.	2.9	12
51	Î ³ δT cells in rheumatic diseases: from fundamental mechanisms to autoimmunity. Seminars in Immunopathology, 2019, 41, 595-605.	6.1	12
52	2D Visualization of the Psoriasis Transcriptome Fails to Support the Existence of Dual-Secreting IL-17A/IL-22 Th17 T Cells. Frontiers in Immunology, 2019, 10, 589.	4.8	12
53	A Mutation in Mouse Pak1ip1 Causes Orofacial Clefting while Human PAK1IP1 Maps to 6p24 Translocation Breaking Points Associated with Orofacial Clefting. PLoS ONE, 2013, 8, e69333.	2.5	10
54	Psoriatic arthritis under the influence of IFNÎ ³ . Clinical Immunology, 2020, 218, 108513.	3.2	10

#	Article	IF	CITATIONS
55	Structural, cellular, and molecular evaluation of bone erosion in experimental models of rheumatoid arthritis: Assessment by μCT, histology, and serum biomarkers. Autoimmunity, 2010, 43, 642-653.	2.6	9
56	Go with the flow—hidden vascular passages in bone. Nature Metabolism, 2019, 1, 173-174.	11.9	8
57	A Novel in vivo Gene Transfer Technique and in vitro Cell Based Assays for the Study of Bone Loss in Musculoskeletal Disorders. Journal of Visualized Experiments, 2014, , .	0.3	5
58	Hepatocyte Growth Factor in Normal and Diseased Bone and Joint Tissues. Current Rheumatology Reviews, 2006, 2, 1-7.	0.8	4
59	Hepatocyte Growth Factor in Normal and Diseased Bone and Joint Tissues. Current Rheumatology Reviews, 2006, 2, 1-7.	0.8	4
60	Autoimmune or autoiflammatory? Bad to the bone. International Journal of Clinical Rheumatology, 2015, 10, 5-7.	0.3	3
61	Transcriptome mining and B cell depletion support a role for B cells in psoriasis pathophysiology. Journal of Dermatological Science, 2019, 96, 181-184.	1.9	3
62	Psoriatic arthritis; overcoming the challenges by creating opportunities. Clinical Immunology, 2020, 218, 108519.	3.2	3
63	Interleukinâ€17A and Pathologic New Bone Formation: TheÂMyth of Prometheus Revisited. Arthritis and Rheumatology, 2019, 71, 483-485.	5.6	2
64	Bishosphonates inhibit bone resorption in multicentric reticulohistiocytosis. Bone, 2006, 38, 65.	2.9	1
65	Loss of WDFY3 ameliorates severity of serum transfer-induced arthritis independently of autophagy. Cellular Immunology, 2017, 316, 61-69.	3.0	1
66	A novel computational method to quantify and analyse osteoclastic bone resorption. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 87-91.	0.2	0
67	K Ca 3.1 as Master Regulator in Inflammatory Osteoclastogenesis. Biophysical Journal, 2017, 112, 547a.	0.5	0