
Richard Ostfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4171030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiversity and Human Health. , 2024, , 377-393.		1
2	An Exploratory Study on the Microbiome of Northern and Southern Populations of Ixodes scapularis Ticks Predicts Changes and Unique Bacterial Interactions. Pathogens, 2022, 11, 130.	1.2	11
3	Effects of Tick-Control Interventions on Tick Abundance, Human Encounters with Ticks, and Incidence of Tickborne Diseases in Residential Neighborhoods, New York, USA. Emerging Infectious Diseases, 2022, 28, 957-966.	2.0	19
4	Blacklegged tick population synchrony between oak forest and nonâ€oak forest. Ecological Entomology, 2021, 46, 827-833.	1.1	4
5	Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	131
6	A new genetic approach to distinguish strains of Anaplasma phagocytophilum that appear not to cause human disease. Ticks and Tick-borne Diseases, 2021, 12, 101659.	1.1	5
7	Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. BioScience, 2021, 71, 722-740.	2.2	24
8	Recent Progress in Lyme Disease and Remaining Challenges. Frontiers in Medicine, 2021, 8, 666554.	1.2	55
9	Dilution effects in disease ecology. Ecology Letters, 2021, 24, 2490-2505.	3.0	54
10	Relations of peri-residential temperature and humidity in tick-life-cycle-relevant time periods with human Lyme disease risk in Pennsylvania, USA. Science of the Total Environment, 2021, 795, 148697.	3.9	4
11	Ecology of Lyme Disease. , 2021, , 275-285.		0
12	Spatial and temporal patterns of the emerging tick-borne pathogen Borrelia miyamotoi in blacklegged ticks (Ixodes scapularis) in New York. Parasites and Vectors, 2021, 14, 51.	1.0	7
13	Effects of physical impairments on fitness correlates of the white-footed mouse, Peromyscus leucopus. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211942.	1.2	2
14	Effect of spatial scale and latitude on diversity–disease relationships. Ecology, 2020, 101, e02955.	1.5	24
15	Presence of Segmented Flavivirus Infections in North America. Emerging Infectious Diseases, 2020, 26, 1810-1817.	2.0	19
16	Parasite and pathogen effects on ecosystem processes: A quantitative review. Ecosphere, 2020, 11, e03057.	1.0	22
17	Species that can make us ill thrive in human habitats. Nature, 2020, 584, 346-347.	13.7	9

18 Planetary Health and Infectious Disease. , 2020, , 141-164.

#	Article	IF	CITATIONS
19	Ticks as Soil-Dwelling Arthropods: An Intersection Between Disease and Soil Ecology. Journal of Medical Entomology, 2019, 56, 1555-1564.	0.9	34
20	Systematic review and meta-analysis of tick-borne disease risk factors in residential yards, neighborhoods, and beyond. BMC Infectious Diseases, 2019, 19, 861.	1.3	26
21	Potential effects of blood meal host on bacterial community composition in Ixodes scapularis nymphs. Ticks and Tick-borne Diseases, 2019, 10, 523-527.	1.1	37
22	Predicting larval tick burden on white-footed mice with an artificial neural network. Ecological Informatics, 2019, 52, 150-158.	2.3	4
23	Topic modeling of major research themes in disease ecology of mammals. Journal of Mammalogy, 2019, 100, 1008-1018.	0.6	14
24	Assessing Effectiveness of Recommended Residential Yard Management Measures Against Ticks. Journal of Medical Entomology, 2019, 56, 1420-1427.	0.9	14
25	Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2019, 2, 445-456.	11.5	362
26	Risk Factors for Bites and Diseases Associated With Black-Legged Ticks: A Meta-Analysis. American Journal of Epidemiology, 2019, 188, 1742-1750.	1.6	26
27	Effects of a zoonotic pathogen, <i>Borrelia burgdorferi</i> , on the behavior of a key reservoir host. Ecology and Evolution, 2018, 8, 4074-4083.	0.8	15
28	The Tick Project: Testing Environmental Methods of Preventing Tick-borne Diseases. Trends in Parasitology, 2018, 34, 447-450.	1.5	27
29	Cattle and rainfall affect tick abundance in central Kenya. Parasitology, 2018, 145, 345-354.	0.7	11
30	Consequences of integrating livestock and wildlife in an African savanna. Nature Sustainability, 2018, 1, 566-573.	11.5	40
31	Variation in coexisting birds to exploit spatial heterogeneity in small mammal activity. Journal of Avian Biology, 2018, 49, .	0.6	9
32	Tritrophic interactions between a fungal pathogen, a spider predator, and the blacklegged tick. Ecology and Evolution, 2018, 8, 7824-7834.	0.8	10
33	Tickâ€borne disease risk in a forest food web. Ecology, 2018, 99, 1562-1573.	1.5	106
34	Not all nesting guild members are alike: nest predators and conspecific abundance differentially influence nest survival in the ground-nesting Ovenbird (<i>Seiurus aurocapilla</i>) and Veery (<i>Catharus fuscescens</i>). Wilson Journal of Ornithology, 2017, 129, 112-121.	0.1	11
35	Is biodiversity bad for your health?. Ecosphere, 2017, 8, e01676.	1.0	46
36	Biodiversity loss and the ecology of infectious disease. Lancet Planetary Health, The, 2017, 1, e2-e3.	5.1	24

#	Article	IF	CITATIONS
37	Tropical forests and child health. Lancet Planetary Health, The, 2017, 1, e164-e165.	5.1	2
38	<i>Zoonoses: Infectious Diseases Transmissible between Animals and Humans</i> . Fourth Edition. By Rolf Bauerfeind, Alexander von Graevenitz, Peter Kimmig, Hans Gerd Schiefer, Tino Schwarz, Werner Slenczka, and Horst Zahner.Washington (DC): ASM Press. \$100.00 (paper). xix + 532 p.; ill.; index. ISBN: 978-1-55581-925-5. 2016 Quarterly Review of Biology, 2017, 92, 346-347.	0.0	0
39	Can integrating wildlife and livestock enhance ecosystem services in central Kenya?. Frontiers in Ecology and the Environment, 2017, 15, 328-335.	1.9	54
40	Trojan Females and Judas Goats: Evolutionary Traps as Tools in Wildlife Management. BioScience, 2017, 67, 983-994.	2.2	30
41	The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods. PLoS ONE, 2017, 12, e0187675.	1.1	29
42	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	1.3	54
43	Influences of Host Community Characteristics on Borrelia burgdorferi Infection Prevalence in Blacklegged Ticks. PLoS ONE, 2017, 12, e0167810.	1.1	19
44	The impact of temperature and precipitation on blacklegged tick activity and Lyme disease incidence in endemic and emerging regions. Parasites and Vectors, 2016, 9, 606.	1.0	64
45	Does biodiversity protect humans against infectious disease? Comment. Ecology, 2016, 97, 536-542.	1.5	28
46	Tickâ€, mosquitoâ€, and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
47	Quantifying dilution and amplification in a community of hosts for tickâ€borne pathogens. Ecological Applications, 2016, 26, 484-498.	1.8	75
48	Where the Wild Things Aren't. American Journal of Clinical Pathology, 2016, 146, 644-646.	0.4	2
49	The Relationship Between Soil Arthropods and the Overwinter Survival of <i>Ixodes scapularis</i> (Acari: Ixodidae) Under Manipulated Snow Cover. Journal of Medical Entomology, 2016, 53, 225-229.	0.9	17
50	Frontiers in research on biodiversity and disease. Ecology Letters, 2015, 18, 1119-1133.	3.0	195
51	Redefining disease emergence to improve prioritization and macro-ecological analyses. One Health, 2015, 1, 17-23.	1.5	9
52	Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Scientific Reports, 2015, 5, 10361.	1.6	81
53	Interactions between mammals and pathogens: an introduction. Journal of Mammalogy, 2015, 96, 2-3.	0.6	2
54	Accelerated phenology of blacklegged ticks under climate warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130556.	1.8	68

#	Article	IF	CITATIONS
55	Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130551.	1.8	215
56	Is biodiversity good for your health?. Science, 2015, 349, 235-236.	6.0	53
57	Bottlenecks in domestic animal populations can facilitate the emergence of <i>Trypanosoma cruzi</i> , the aetiological agent of Chagas disease. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142807.	1.2	16
58	Climate change and <i>Ixodes</i> tick-borne diseases of humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140051.	1.8	214
59	Life History and Demographic Drivers of Reservoir Competence for Three Tick-Borne Zoonotic Pathogens. PLoS ONE, 2014, 9, e107387.	1.1	106
60	The Prevalence of Zoonotic Tick-Borne Pathogens in <i>Ixodes Scapularis</i> Collected in the Hudson Valley, New York State. Vector-Borne and Zoonotic Diseases, 2014, 14, 245-250.	0.6	71
61	Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathogens, 2014, 10, e1004129.	2.1	135
62	Of Mice and Men: Lyme Disease and Biodiversity. Perspectives in Biology and Medicine, 2014, 57, 198-207.	0.3	7
63	When is a parasite not a parasite? Effects of larval tick burdens on whiteâ€footed mouse survival. Ecology, 2014, 95, 1360-1369.	1.5	26
64	Reply to De Coster et al.: Exploring the complexity of ecosystem–human health relationships. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1816.	3.3	2
65	Co-Infection of Blacklegged Ticks with Babesia microti and Borrelia burgdorferi Is Higher than Expected and Acquired from Small Mammal Hosts. PLoS ONE, 2014, 9, e99348.	1.1	114
66	Prevalence of Human-Active and Variant 1 Strains of the Tick-Borne Pathogen Anaplasma phagocytophilum in Hosts and Forests of Eastern North America. American Journal of Tropical Medicine and Hygiene, 2014, 91, 302-309.	0.6	36
67	Effects of environmental change on zoonotic disease risk: an ecological primer. Trends in Parasitology, 2014, 30, 205-214.	1.5	196
68	Reservoir Targeted Vaccine Against Borrelia burgdorferi: A New Strategy to Prevent Lyme Disease Transmission. Journal of Infectious Diseases, 2014, 209, 1972-1980.	1.9	87
69	Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife. Infection, Genetics and Evolution, 2014, 27, 594-600.	1.0	51
70	Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State. Parasites and Vectors, 2013, 6, 185.	1.0	69
71	Novel Organisms: Comparing Invasive Species, GMOs, and Emerging Pathogens. Ambio, 2013, 42, 541-548.	2.8	70
72	Effects of wildlife and cattle on tick abundance in central Kenya. Ecological Applications, 2013, 23, 1410-1418.	1.8	53

#	Article	IF	CITATIONS
73	Ecology of Lyme Disease. , 2013, , 243-251.		3
74	Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences, 2013, 1297, 1-7.	1.8	44
75	Straw men don't get Lyme disease: response to Wood and Lafferty. Trends in Ecology and Evolution, 2013, 28, 502-503.	4.2	44
76	Biodiversity and Human Health. , 2013, , 357-372.		0
77	Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science, 2013, 341, 514-519.	6.0	951
78	Human health impacts of ecosystem alteration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18753-18760.	3.3	327
79	A Candide response to Panglossian accusations by Randolph and Dobson: biodiversity buffers disease. Parasitology, 2013, 140, 1196-1198.	0.7	31
80	An Experimental Test of Competition among Mice, Chipmunks, and Squirrels in Deciduous Forest Fragments. PLoS ONE, 2013, 8, e66798.	1.1	17
81	Overwintering Survival of Nymphal <i>Ixodes scapularis</i> (Acari: Ixodidae) Under Natural Conditions. Journal of Medical Entomology, 2012, 49, 981-987.	0.9	50
82	The Influence of Nearest Seed Neighbors on Seed Removal in Deciduous Forests. Northeastern Naturalist, 2012, 19, 43-48.	0.1	11
83	Disease Ecology. , 2012, , 217-230.		5
84	Effects of Host Diversity on Infectious Disease. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 157-182.	3.8	355
85	Modelling Transmission of Vector-Borne Pathogens Shows Complex Dynamics When Vector Feeding Sites Are Limited. PLoS ONE, 2012, 7, e36730.	1.1	7
86	Reservoir Competence of Vertebrate Hosts for <i>Anaplasma phagocytophilum</i> . Emerging Infectious Diseases, 2012, 18, 2013-2013.	2.0	81
87	Impacts of an Introduced Forest Pathogen on the Risk of Lyme Disease in California. Vector-Borne and Zoonotic Diseases, 2012, 12, 623-632.	0.6	23
88	Immunochallenge reduces risk sensitivity during foraging in white-footed mice. Animal Behaviour, 2012, 83, 155-161.	0.8	13
89	Relationship between pace of life and immune responses in wild rodents. Oikos, 2012, 121, 1483-1492.	1.2	114
90	Reservoir Competence of Wildlife Host Species for <i>Babesia microti</i> . Emerging Infectious Diseases, 2012, 18, 1951-1957.	2.0	95

#	Article	IF	CITATIONS
91	Effects of garlic mustard (<i>Alliaria petiolata</i>) on entomopathogenic fungi. Ecoscience, 2011, 18, 164-168.	0.6	6
92	Data–model fusion to better understand emerging pathogens and improve infectious disease forecasting. , 2011, 21, 1443-1460.		49
93	Linking disease and community ecology through behavioural indicators: immunochallenge of white-footed mice and its ecological impacts. Journal of Animal Ecology, 2011, 80, 204-214.	1.3	13
94	Investigating and Managing the Rapid Emergence of White-Nose Syndrome, a Novel, Fatal, Infectious Disease of Hibernating Bats. Conservation Biology, 2011, 25, no-no.	2.4	115
95	Preface. Annals of the New York Academy of Sciences, 2011, 1223, v.	1.8	0
96	Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus. Oecologia, 2011, 166, 91-100.	0.9	31
97	Molting Success of Ixodes scapularis Varies Among Individual Blood Meal Hosts and Species. Journal of Medical Entomology, 2011, 48, 860-866.	0.9	33
98	<i>Borrelia burgdorferi</i> Has Minimal Impact on the Lyme Disease Reservoir Host <i>Peromyscus leucopus</i> . Vector-Borne and Zoonotic Diseases, 2011, 11, 117-124.	0.6	62
99	Impact of the experimental removal of lizards on Lyme disease risk. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2970-2978.	1.2	81
100	It Takes a Community to Raise the Prevalence of a Zoonotic Pathogen. Interdisciplinary Perspectives on Infectious Diseases, 2011, 2011, 1-6.	0.6	14
101	Partitioning the Aggregation of Parasites on Hosts into Intrinsic and Extrinsic Components via an Extended Poisson-Gamma Mixture Model. PLoS ONE, 2011, 6, e29215.	1.1	49
102	The Ecology of Infectious Diseases: Progress, Challenges, and Frontiers. , 2010, , 469-482.		3
103	Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468, 647-652.	13.7	1,481
104	A Community-Ecology Framework for Understanding Vector and Vector-Borne Disease Dynamics. Israel Journal of Ecology and Evolution, 2010, 56, 251-262.	0.2	8
105	Environmental monitoring to enhance comprehension and control of infectious diseases. Journal of Environmental Monitoring, 2010, 12, 2048.	2.1	26
106	Infectious Disease Ecology. , 2010, , .		52
107	Quantifying a dynamic risk landscape: heterogeneous predator activity and implications for prey persistence. Ecology, 2009, 90, 240-251.	1.5	17
108	Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia, 2009, 158, 699-708.	0.9	185

#	Article	IF	CITATIONS
109	Preface. Annals of the New York Academy of Sciences, 2009, 1162, vii-vii.	1.8	1
110	Biodiversity loss and the rise of zoonotic pathogens. Clinical Microbiology and Infection, 2009, 15, 40-43.	2.8	105
111	Influence of Hosts on the Ecology of Arboviral Transmission: Potential Mechanisms Influencing Dengue, Murray Valley Encephalitis, and Ross River Virus in Australia. Vector-Borne and Zoonotic Diseases, 2009, 9, 51-64.	0.6	52
112	Climate change and the distribution and intensity of infectious diseases. Ecology, 2009, 90, 903-905.	1.5	87
113	Biodiversity Loss Affects Global Disease Ecology. BioScience, 2009, 59, 945-954.	2.2	211
114	Hosts as ecological traps for the vector of Lyme disease. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3911-3919.	1.2	204
115	Biodiversity and ecosystem function: perspectives on disease. , 2009, , 209-216.		4
116	Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence. PLoS ONE, 2009, 4, e5461.	1.1	181
117	Spatial Dynamics of Lyme Disease: A Review. EcoHealth, 2008, 5, 167-195.	0.9	137
118	Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna. Oecologia, 2008, 156, 387-397.	0.9	64
119	Preface. Annals of the New York Academy of Sciences, 2008, 1134, ix-x.	1.8	0
120	Parasites as weapons of mouse destruction. Journal of Animal Ecology, 2008, 77, 201-204.	1.3	11
121	Wood thrush nest success and post-fledging survival across a temporal pulse of small mammal abundance in an oak forest. Journal of Animal Ecology, 2008, 77, 830-837.	1.3	70
122	MULTIPLE CAUSES OF VARIABLE TICK BURDENS ON SMALL-MAMMAL HOSTS. Ecology, 2008, 89, 2259-2272.	1.5	150
123	Estimating Reservoir Competence of <i>Borrelia burgdorferi</i> Hosts: Prevalence and Infectivity, Sensitivity, and Specificity. Journal of Medical Entomology, 2008, 45, 139-147.	0.9	67
124	Eavesdropping Squirrels Reduce Their Future Value of Food under the Perceived Presence of Cache Robbers. American Naturalist, 2008, 171, 386-393.	1.0	27
125	IMPACT OF HOST COMMUNITY COMPOSITION ON LYME DISEASE RISK. Ecology, 2008, 89, 2841-2849.	1.5	189
126	Estimating Reservoir Competence of <i>Borrelia burgdorferi</i> Hosts: Prevalence and Infectivity, Sensitivity, and Specificity. Journal of Medical Entomology, 2008, 45, 139-147.	0.9	54

#	Article	IF	CITATIONS
127	NUMERICAL AND BEHAVIORAL EFFECTS WITHIN A PULSE-DRIVEN SYSTEM: CONSEQUENCES FOR SHARED PREY. Ecology, 2008, 89, 635-646.	1.5	114
128	Eastern chipmunks increase their perception of predation risk in response to titmouse alarm calls. Behavioral Ecology, 2008, 19, 759-763.	1.0	56
129	Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 227-235.	1.2	179
130	SPATIAL SELECTION AND INHERITANCE: APPLYING EVOLUTIONARY CONCEPTS TO POPULATION DYNAMICS IN HETEROGENEOUS SPACE. Ecology, 2007, 88, 1112-1118.	1.5	16
131	THE ROLE OF LIZARDS IN THE ECOLOGY OF LYME DISEASE IN TWO ENDEMIC ZONES OF THE NORTHEASTERN UNITED STATES. Journal of Parasitology, 2007, 93, 511-517.	0.3	26
132	Spatio-temporal patterns in county-level incidence and reporting of Lyme disease in the northeastern United States, 1990–2000. Environmental and Ecological Statistics, 2007, 14, 83-100.	1.9	35
133	Abundance and Borrelia burgdorferi-infection Prevalence of Nymphal Ixodes scapularis Ticks along Forest–Field Edges. EcoHealth, 2007, 3, 262-268.	0.9	46
134	Pulsed Resources and Community Responses. , 2007, , 30-42.		3
135	Effects of species diversity on disease risk. Ecology Letters, 2006, 9, 485-498.	3.0	1,194
136	Spatial heterogeneity in predator activity, nest survivorship, and nest-site selection in two forest thrushes. Oecologia, 2006, 148, 22-29.	0.9	71
137	Controlling Ticks and Tick-borne Zoonoses with Biological and Chemical Agents. BioScience, 2006, 56, 383.	2.2	93
138	Community ecology meets epidemiology: the case of Lyme disease. , 2006, , 28-40.		39
139	Climate, Deer, Rodents, and Acorns as Determinants of Variation in Lyme-Disease Risk. PLoS Biology, 2006, 4, e145.	2.6	387
140	Sacred Cows and Sympathetic Squirrels: The Importance of Biological Diversity to Human Health. PLoS Medicine, 2006, 3, e231.	3.9	144
141	INVASIVE SHRUBS AND SONGBIRD NESTING SUCCESS: EFFECTS OF CLIMATE VARIABILITY AND PREDATOR ABUNDANCE. , 2005, 15, 258-265.		26
142	Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari:) Tj ETQqC	00.rgBT	Oyerlock 10
143	LIMITED DISPERSAL AND HETEROGENEOUS PREDATION RISK SYNERGISTICALLY ENHANCE PERSISTENCE OF RARE PREY. Ecology, 2005, 86, 3139-3148.	1.5	14

¹⁴⁴Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology and Evolution, 2005,
20, 328-336.4.2586

#	Article	IF	CITATIONS
145	WHAT IS THE BEST PREDICTOR OF ANNUAL LYME DISEASE INCIDENCE: WEATHER, MICE, OR ACORNS?. , 2005, 15, 575-586.		61
146	A PRESCRIPTION FOR LONGER LIFE? BOT FLY PARASITISM OF THE WHITE-FOOTED MOUSE. Ecology, 2005, 86, 753-761.	1.5	36
147	USE OF TRACK PLATES TO QUANTIFY PREDATION RISK AT SMALL SPATIAL SCALES. Journal of Mammalogy, 2005, 86, 991-996.	0.6	28
148	A call to ecologists: measuring, analyzing, and managing ecosystem services. Frontiers in Ecology and the Environment, 2005, 3, 540-548.	1.9	264
149	Effectiveness of Metarhizium anisopliae (Deuteromycetes) against Ixodes scapularis (Acari: Ixodidae) engorging on Peromnyscus leucopus. Journal of Vector Ecology, 2005, 30, 91-101.	0.5	26
150	Sand Fly (<i>Lutzomyia vexator</i>) (Diptera: Psychodidae) Populations in Upstate New York: Abundance, Microhabitat, and Phenology. Journal of Medical Entomology, 2004, 41, 774-778.	0.9	22
151	ECOLOGY: Enhanced: Oh the Locusts Sang, Then They Dropped Dead. Science, 2004, 306, 1488-1489.	6.0	5
152	NET EFFECTS OF LARGE MAMMALS ON ACACIA SEEDLING SURVIVAL IN AN AFRICAN SAVANNA. Ecology, 2004, 85, 1555-1561.	1.5	92
153	Sublethal Effects of <i>Metarhizium anisopliae</i> (Deuteromycetes) on Engorged Larval, Nymphal, and Adult <i>Ixodes scapularis</i> (Acari: Ixodidae). Journal of Medical Entomology, 2004, 41, 922-929.	0.9	40
154	Type 3 functional response of mice to gypsy moth pupae: is it stabilizing?. Oikos, 2004, 107, 592-602.	1.2	24
155	NEIGHBORHOOD ANALYSES OF SMALL-MAMMAL DYNAMICS: IMPACTS ON SEED PREDATION AND SEEDLING ESTABLISHMENT. Ecology, 2004, 85, 741-755.	1.5	77
156	Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment, 2004, 2, 13-20.	1.9	253
157	Effect of Forest Fragmentation on Lyme Disease Risk. Conservation Biology, 2003, 17, 267-272.	2.4	489
158	COMMUNITY DISASSEMBLY, BIODIVERSITY LOSS, AND THE EROSION OF AN ECOSYSTEM SERVICE. Ecology, 2003, 84, 1421-1427.	1.5	205
159	The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 567-571.	3.3	907
160	ANTHROPOGENIC DISTURBANCES ENHANCE OCCURRENCE OF CUTANEOUS LEISHMANIASIS IN ISRAEL DESERTS: PATTERNS AND MECHANISMS. , 2003, 13, 868-881.		51
161	The Effects of Bird Feeders on Lyme Disease Prevalence and Density of <i>lxodes scapularis</i> (Acari:) Tj ETQq1 1 540-546.	0.784314 0.9	4 rgBT /Over 7
162	MICE IN SPACE: SPACE USE PREDICTS THE INTERACTION BETWEEN MICE AND SONGBIRDS. Ecology, 2003, 84, 3276-3283.	1.5	35

#	Article	IF	CITATIONS
163	SONGBIRD POPULATIONS IN FLUCTUATING ENVIRONMENTS: PREDATOR RESPONSES TO PULSED RESOURCES. Ecology, 2003, 84, 406-415.	1.5	126
164	FACTORS INFLUENCING THE DISTRIBUTION OF LARVAL BLACKLEGGED TICKS ON RODENT HOSTS. American Journal of Tropical Medicine and Hygiene, 2003, 68, 447-452.	0.6	58
165	Factors influencing the distribution of larval blacklegged ticks on rodent hosts. American Journal of Tropical Medicine and Hygiene, 2003, 68, 447-52.	0.6	29
166	Direct and indirect effects of masting on rodent populations and tree seed survival. Oikos, 2002, 96, 402-410.	1.2	162
167	MODELING THE EFFECTS OF RESERVOIR COMPETENCE DECAY AND DEMOGRAPHIC TURNOVER IN LYME DISEASE ECOLOGY. , 2002, 12, 1142-1162.		37
168	Laboratory and Field Evaluation of the Entomopathogenic Fungus <l>Metarhizium anisopliae</l> (Deuteromycetes) for Controlling Questing Adult <l>Ixodes scapularis</l> (Acari: Ixodidae). Journal of Medical Entomology, 2002, 39, 723-728.	0.9	89
169	Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science, 2002, 296, 2158-2162.	6.0	2,154
170	Mammalian predator scent, vegetation cover and tree seedling predation by meadow voles. Ecography, 2002, 25, 481-487.	2.1	26
171	Herbivory on Acacia seedlings in an East African savanna. Oikos, 2002, 98, 385-392.	1.2	47
172	BIODIVERSITY AND THE DILUTION EFFECT IN DISEASE ECOLOGY. Ecology, 2001, 82, 609-619.	1.5	443
173	Effects of Acorn Production and Mouse Abundance on Abundance and Borrelia burgdorferi Infection Prevalence of Nymphal Ixodes scapularis Ticks. Vector-Borne and Zoonotic Diseases, 2001, 1, 55-63.	0.6	101
174	EXPERIMENTAL REMOVAL OF STRONG AND WEAK PREDATORS: MICE AND CHIPMUNKS PREYING ON SONGBIRD NESTS. Ecology, 2001, 82, 2927-2936.	1.5	54
175	LONG-TERM EFFECTS OF RODENT HERBIVORES ON TREE INVASION DYNAMICS ALONG FOREST–FIELD EDGES. Ecology, 2001, 82, 3320-3329.	1.5	34
176	Long-Term Effects of Rodent Herbivores on Tree Invasion Dynamics along Forest-Field Edges. Ecology, 2001, 82, 3320.	1.5	60
177	Spatiotemporal Variation in a Lyme Disease Host and Vector: Black-Legged Ticks on White-Footed Mice. Vector-Borne and Zoonotic Diseases, 2001, 1, 129-138.	0.6	38
178	BIODIVERSITY AND THE DILUTION EFFECT IN DISEASE ECOLOGY. , 2001, 82, 609.		26
179	Patch Selection and Tree-Seedling Predation by President vs. Immigrant Meadow Voles. Ecology, 2000, 81, 2951.	1.5	0
180	Biodiversity and Disease Risk: the Case of Lyme Disease. Conservation Biology, 2000, 14, 722-728.	2.4	551

#	Article	IF	CITATIONS
181	Effects of stoat's presence and auditory cues indicating its presence on tree seedling predation by meadow voles. Oikos, 2000, 91, 123-130.	1.2	40
182	PATCH SELECTION AND TREE-SEEDLING PREDATION BY RESIDENT VS. IMMIGRANT MEADOW VOLES. Ecology, 2000, 81, 2951-2956.	1.5	23
183	Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology and Evolution, 2000, 15, 232-237.	4.2	628
184	Modeling the role of songbirds and rodents in the ecology of Lyme disease. Canadian Journal of Zoology, 2000, 78, 2184-2197.	0.4	48
185	Muskrat (Ondatra zibethicus) Disturbance to Vegetation and Potential Net Nitrogen Mineralization and Nitrification Rates in a Freshwater Tidal Marsh. American Midland Naturalist, 2000, 143, 53-63.	0.2	46
186	Biodiversity series: The function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology, 2000, 78, 2061-2078.	0.4	322
187	Factors Influencing Variation among States in the Number of Federally Listed Mammals in the United States. Journal of Mammalogy, 1999, 80, 711-719.	0.6	20
188	Infestation ofPeromyscus leucopusandTamias striatusbylxodes scapularis(Acari: Ixodidae) in Relation to the Abundance of Hosts and Parasites. Journal of Medical Entomology, 1999, 36, 749-757.	0.9	87
189	Responses of a small mammal community to heterogeneity along forest-old-field edges. Landscape Ecology, 1999, 14, 355-367.	1.9	75
190	Interactions Between Meadow Voles and White-Footed Mice at Forest—Oldfield Edges: Competition and Net Effects on Tree Invasion of Oldfields. , 1999, , 229-247.		10
191	Experimental studies of interactions between wild turkeys and black-legged ticks. Journal of Vector Ecology, 1999, 24, 182-6.	0.5	10
192	Integrative ecology and the dynamics of species in oak forests. Integrative Biology: Issues, News, and Reviews, 1998, 1, 178-186.	0.7	11
193	The importance of interactions in the population ecology of the vole <i>Clethrionomys rufocanus</i> . Researches on Population Ecology, 1998, 40, 131-133.	0.9	3
194	Mast seeding and Lyme disease. Trends in Ecology and Evolution, 1998, 13, 506.	4.2	5
195	Chain Reactions Linking Acorns to Gypsy Moth Outbreaks and Lyme Disease Risk. Science, 1998, 279, 1023-1026.	6.0	393
196	Effects of Prior Population Density on Use of Space by Meadow Voles, Microtus pennsylvanicus. Journal of Mammalogy, 1998, 79, 551-557.	0.6	2
197	Coinfection of Blacklegged Ticks (Acari: Ixodidae) in Dutchess County, New York, with the Agents of Lyme Disease and Human Granulocytic Ehrlichiosis. Journal of Medical Entomology, 1998, 35, 901-903.	0.9	45
198	HABITAT HETEROGENEITY, DISPERSAL, AND LOCAL RISK OF EXPOSURE TO LYME DISEASE. , 1998, 8, 365-378.		48

#	Article	IF	CITATIONS
199	The effects of tree seed and seedling density on predation rates by rodents in old fields. Ecoscience, 1998, 5, 183-190.	0.6	40
200	Integrative ecology and the dynamics of species in oak forests. , 1998, 1, 178.		2
201	Effects of Density and Season on the Population Rate of Change in the Meadow Vole. Oikos, 1997, 78, 355.	1.2	56
202	EFFECTS OF RODENTS ON SURVIVAL OF TREE SEEDS AND SEEDLINGS INVADING OLD FIELDS. Ecology, 1997, 78, 1531-1542.	1.5	263
203	Of Mice and Mast. BioScience, 1996, 46, 323-330.	2.2	351
204	A Correction to "Of Mice and Mast". BioScience, 1996, 46, 565-565.	2.2	1
205	Temporal and Spatial Dynamics of Ixodes scapularis (Acari: Ixodidae) in a Rural Landscape. Journal of Medical Entomology, 1996, 33, 90-95.	0.9	87
206	Causes and Consequences of Tick (Ixodes scapularis) Burdens on White-Footed Mice (Peromyscus) Tj ETQq0 0 C	rgBT /Ove	erlogk 10 Tf 5
207	Long-Distance Homing in Meadow Voles, Microtus pennsylvanicus. Journal of Mammalogy, 1996, 77, 870.	0.6	18
208	Ecology of Lyme Disease: Habitat Associations of Ticks (Ixodes Scapularis) In a Rural Landscape. , 1995, 5, 353-361.		98
209	Controlling Lyme Disease by Modifying the Density and Species Composition of Tick Hosts. , 1995, 5, 1133-1140.		130
210	Nonviral Vector-Borne Zoonoses Associated with Mammals in the United States. Journal of Mammalogy, 1995, 76, 695.	0.6	79
211	Density-Dependent Processes in Meadow Voles: An Experimental Approach. Ecology, 1995, 76, 521-532.	1.5	106
212	Larval Density and Feeding Success of Ixodes scapularis on Two Species of Peromyscus. Journal of Parasitology, 1995, 81, 870.	0.3	23
213	Larval density and feeding success of Ixodes scapularis on two species of Peromyscus. Journal of Parasitology, 1995, 81, 870-5.	0.3	8
214	The Fence Effect Reconsidered. Oikos, 1994, 70, 340.	1.2	56
215	Intrinsic density-dependent regulation of vole populations. Nature, 1993, 366, 259-261.	13.7	94
216	Effects of Meadow Vole Population Density on Tree Seedling Survival in Oil Fields. Ecology, 1993, 74, 1792-1801.	1.5	137

#	Article	IF	CITATIONS
217	Do Changes in Female Relatedness Determine Demographic Patterns in Microtine Rodents?. Oikos, 1992, 65, 531.	1.2	11
218	Effects of Habitat Patchiness on Population Dynamics: A Modelling Approach. , 1992, , 851-863.		8
219	Small-Mammal Herbivores in a Patchy Environment: Individual Strategies and Population Responses. , 1992, , 43-74.		30
220	Measuring Diving Success of Otters. Oikos, 1991, 60, 258.	1.2	2
221	Extra-Large Body Size in California Voles: Causes and Fitness Consequences. Oikos, 1991, 61, 108.	1.2	55
222	Sexual Dimorphism in Size, Relative Size of Testes, and Mating Systems in North American Voles. Journal of Mammalogy, 1990, 71, 510-519.	0.6	138
223	The ecology of territoriality in small mammals. Trends in Ecology and Evolution, 1990, 5, 411-415.	4.2	323
224	Microtine Social Systems, Adaptation, and the Comparative Method. , 1990, , 35-44.		7
225	Space use and Reproductive Success in a Population of Meadow Voles. Journal of Animal Ecology, 1988, 57, 385.	1.3	64
226	Does social behavior drive vole cycles? An evaluation of competing models as they pertain to California voles. Canadian Journal of Zoology, 1988, 66, 1153-1159.	0.4	30
227	Fluctuations and Constancy in Populations of Small Rodents. American Naturalist, 1988, 131, 445-452.	1.0	48
228	On the Distinction between Female Defense and Resource Defense Polygyny. Oikos, 1987, 48, 238.	1.2	39
229	Territoriality and Mating System of California Voles. Journal of Animal Ecology, 1986, 55, 691.	1.3	169
230	Limiting Resources and Territoriality in Microtine Rodents. American Naturalist, 1985, 126, 1-15.	1.0	455
231	The Relationship between Habitat Heterogeneity, Space Use, and Demography in a Population of California Voles. Oikos, 1985, 45, 433.	1.2	107
232	Experimental analysis of aggression and spacing behavior in California voles. Canadian Journal of Zoology, 1985, 63, 2277-2282.	0.4	32
233	Competitive Interactions between Microtus californicus and Reithrodontomys megalotis during Two Peaks of Microtus Abundance. Journal of Mammalogy, 1984, 65, 271-280.	0.6	35
234	The Behavioral Hierarchy of the Garden Snail <i>Helix aspersa</i> . Zeitschrift Für Tierpsychologie, 1982, 59, 109-126.	0.2	18

#	Article	IF	CITATIONS
235	Effects of weather variability on population dynamics of white-footed mice (Peromyscus leucopus) and eastern chipmunks (Tamias striatus). Journal of Mammalogy, 0, , .	0.6	1