Susan E Quaggin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4170385/publications.pdf

Version: 2024-02-01

89 papers 8,905 citations

43 h-index 79 g-index

99 all docs 99 docs citations 99 times ranked 10194 citing authors

#	Article	IF	CITATIONS
1	Removing Race from Kidney Disease Diagnosis. American Journal of Kidney Diseases, 2022, 79, 153-155.	1.9	3
2	Endothelial Tyrosine Kinase Tie1 Is Required for Normal Schlemm's Canal Development—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 348-351.	2.4	6
3	Preparation of a Single Cell Suspension from the Murine Iridocorneal Angle. Bio-protocol, 2022, 12, .	0.4	2
4	New soluble angiopoietin analog of Heptaâ€ANG1 prevents pathological vascular leakage. Biotechnology and Bioengineering, 2021, 118, 423-432.	3.3	7
5	Advancing Nephrology. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 319-327.	4.5	7
6	COVID-19–Associated Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 33-40.	6.1	141
7	Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circulation Research, 2021, 128, e46-e62.	4.5	98
8	The lymphatics in kidney health and disease. Nature Reviews Nephrology, 2021, 17, 655-675.	9.6	30
9	Kidney-Related Research in the United States: A Position Statement From the National Kidney Foundation and the American Society of Nephrology. American Journal of Kidney Diseases, 2021, 78, 161-167.	1.9	15
10	Evolving Demographics of Nephrology Research Workforce in the United States. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1312-1314.	4.5	0
11	Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nature Communications, 2021, 12, 6072.	12.8	40
12	Tribute to Barbara T. Murphy. Journal of the American Society of Nephrology: JASN, 2021, 32, 2685-2686.	6.1	0
13	The Art and Science of Medicine … and Standardized Test Scores. Journal of the American Society of Nephrology: JASN, 2021, 32, 2694-2696.	6.1	O
14	Removing Race from Kidney Disease Diagnosis. Journal of the American Society of Nephrology: JASN, 2021, 32, 2987-2989.	6.1	6
15	<i>SVEP1</i> as a Genetic Modifier of <i>TEK</i> -Related Primary Congenital Glaucoma., 2020, 61, 6.		25
16	Angiopoietin-1 Knockout Mice as a Genetic Model of Open-Angle Glaucoma. Translational Vision Science and Technology, 2020, 9, 16.	2.2	22
17	Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB BioAdvances, 2019, 1, 498-510.	2.4	6
18	Genetic Deletion of Emp2 Does Not Cause Proteinuric Kidney Disease in Mice. Frontiers in Medicine, 2019, 6, 189.	2.6	3

#	Article	lF	Citations
19	Forward genetic screen in human podocytes identifies diphthamide biosynthesis genes as regulators of adhesion. American Journal of Physiology - Renal Physiology, 2019, 317, F1593-F1604.	2.7	4
20	Endothelial ERK1/2 signaling maintains integrity of the quiescent endothelium. Journal of Experimental Medicine, 2019, 216, 1874-1890.	8.5	47
21	Targeting VE-PTP phosphatase protects the kidney from diabetic injury. Journal of Experimental Medicine, 2019, 216, 936-949.	8.5	34
22	Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. ELife, 2019, 8, .	6.0	30
23	Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels. Journal of the American Society of Nephrology: JASN, 2018, 29, 1097-1107.	6.1	59
24	Inverse correlation between vascular endothelial growth factor back-filtration and capillary filtration pressures. Nephrology Dialysis Transplantation, 2018, 33, 1514-1525.	0.7	7
25	Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling. Angiogenesis, 2018, 21, 335-347.	7.2	31
26	Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1298-1303.	7.1	85
27	Angiopoietins bind thrombomodulin and inhibit its function as a thrombin cofactor. Scientific Reports, 2018, 8, 505.	3.3	34
28	Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney International, 2018, 94, 114-125.	5.2	94
29	Plasma Vascular Endothelial Growth Factor Concentrations after Intravitreous Anti–Vascular Endothelial Growth Factor Therapy for Diabetic Macular Edema. Ophthalmology, 2018, 125, 1054-1063.	5. 2	32
30	Morphological Analysis of Schlemm's Canal in Mice. Methods in Molecular Biology, 2018, 1846, 153-160.	0.9	7
31	Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development. Journal of the American Society of Nephrology: JASN, 2018, 29, 2795-2808.	6.1	23
32	Selective permeability of mouse blood-aqueous barrier as determined by $\langle \sup \rangle 15 \langle \sup \rangle$ N-heavy isotope tracing and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9032-9037.	7.1	13
33	Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility. PLoS ONE, 2018, 13, e0193032.	2.5	16
34	A suPAR kidney connection found in the bone marrow. Nature Reviews Nephrology, 2017, 13, 263-264.	9.6	3
35	Glomerular mesangial cell recruitment and function require the co-receptor neuropilin-1. American Journal of Physiology - Renal Physiology, 2017, 313, F1232-F1242.	2.7	16
36	Selective tubular activation of hypoxia-inducible factor- $2\hat{l}_{\pm}$ has dual effects on renal fibrosis. Scientific Reports, 2017, 7, 11351.	3.3	30

#	Article	IF	CITATIONS
37	A novel acetyltransferase p300 inhibitor ameliorates hypertension-associated cardio-renal fibrosis. Epigenetics, 2017, 12, 1004-1013.	2.7	41
38	SuPAR and FSGS: is the jury still out?. Nature Reviews Nephrology, 2017, 13, 593-593.	9.6	2
39	Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumourigenesis gene discovery model. DMM Disease Models and Mechanisms, 2017, 10, 1503-1515.	2.4	8
40	A novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes. British Journal of Pharmacology, 2017, 174, 163-176.	5.4	21
41	Angiopoietin-1 deficiency increases tumor metastasis in mice. BMC Cancer, 2017, 17, 539.	2.6	26
42	Angiopoietin-1 is required for Schlemm's canal development in mice and humans. Journal of Clinical Investigation, 2017, 127, 4421-4436.	8.2	94
43	Formation and Maintenance of a Functional Glomerulus. , 2016, , 103-119.		6
44	Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. Journal of Clinical Investigation, 2016, 126, 2575-2587.	8.2	175
45	Vascular Growth Factors and Glomerular Disease. Annual Review of Physiology, 2016, 78, 437-461.	13.1	89
46	CD146 + cells are essential for kidney vasculature development. Kidney International, 2016, 90, 311-324.	5. 2	47
47	Dysregulation of angiopoietin-1 plays a mechanistic role in the pathogenesis of cerebral malaria. Science Translational Medicine, 2016, 8, 358ra128.	12.4	69
48	Nephrin Tyrosine Phosphorylation Is Required to Stabilize and Restore Podocyte Foot Process Architecture. Journal of the American Society of Nephrology: JASN, 2016, 27, 2422-2435.	6.1	65
49	ATGme: Open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinformatics, 2015, 16, 303.	2.6	33
50	Crosstalk in glomerular injury and repair. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	2.0	55
51	Signaling during Kidney Development. Cells, 2015, 4, 112-132.	4.1	50
52	The cell biology of renal filtration. Journal of Cell Biology, 2015, 209, 199-210.	5 . 2	270
53	Therapies on the Horizon for Diabetic Kidney Disease. Current Diabetes Reports, 2015, 15, 111.	4.2	28
54	Tubulovascular Cross-Talk by Vascular Endothelial Growth Factor A Maintains Peritubular Microvasculature in Kidney. Journal of the American Society of Nephrology: JASN, 2015, 26, 1027-1038.	6.1	127

#	Article	IF	Citations
55	Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS. Journal of the American Society of Nephrology: JASN, 2014, 25, 2459-2470.	6.1	52
56	The Glomerulus. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1461-1469.	4.5	133
57	PAI-1–regulated extracellular proteolysis governs senescence and survival in <i>Klotho</i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7090-7095.	7.1	135
58	A lymphatic defect causes ocular hypertension and glaucoma in mice. Journal of Clinical Investigation, 2014, 124, 4320-4324.	8.2	151
59	Glomerular Cell Biology. , 2013, , 721-755.		7
60	DGKE and atypical HUS. Nature Genetics, 2013, 45, 475-476.	21.4	45
61	Soluble FLT1 Binds Lipid Microdomains in Podocytes to Control Cell Morphology and Glomerular Barrier Function. Cell, 2012, 151, 384-399.	28.9	144
62	Vegfa Protects the Glomerular Microvasculature in Diabetes. Diabetes, 2012, 61, 2958-2966.	0.6	123
63	Embryology of the Kidney. , 2012, , 2-30.		3
64	Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nature Medicine, 2011, 17, 1242-1250.	30.7	204
65	Scar wars: mapping the fate of epithelial–mesenchymal–myofibroblast transition. Kidney International, 2011, 80, 41-50.	5.2	166
66	Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. Journal of Clinical Investigation, 2011, 121, 2278-2289.	8.2	362
67	Glomerular Structure and Function Require Paracrine, Not Autocrine, VEGF–VEGFR-2 Signaling. Journal of the American Society of Nephrology: JASN, 2010, 21, 1691-1701.	6.1	236
68	Insulin Signaling to the Glomerular Podocyte Is Critical for Normal Kidney Function. Cell Metabolism, 2010, 12, 329-340.	16.2	376
69	Genetic susceptibility to HIV-associated nephropathy. Journal of Clinical Investigation, 2009, 119, 1085-1089.	8.2	5
70	VEGF Inhibition and Renal Thrombotic Microangiopathy. New England Journal of Medicine, 2008, 358, 1129-1136.	27.0	1,348
71	Development of the renal glomerulus: good neighbors and good fences. Development (Cambridge), 2008, 135, 609-620.	2.5	199
72	How Do Mesangial and Endothelial Cells Form the Glomerular Tuft?. Journal of the American Society of Nephrology: JASN, 2008, 19, 24-33.	6.1	92

#	Article	IF	Citations
73	Role of the VEGF-A Signaling Pathway in the Glomerulus: Evidence for Crosstalk between Components of the Glomerular Filtration Barrier. Nephron Physiology, 2007, 106, p32-p37.	1.2	169
74	Podocyte–Endothelial Interactions. , 2007, , 620-626.		0
75	Mouse Models of Glomerulogenesis and Glomerular Disease. FASEB Journal, 2007, 21, A137.	0.5	0
76	Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO Journal, 2006, 25, 1160-1174.	7.8	196
77	Vascular Endothelial Growth Factor A Signaling in the Podocyte-Endothelial Compartment Is Required for Mesangial Cell Migration and Survival. Journal of the American Society of Nephrology: JASN, 2006, 17, 724-735.	6.1	217
78	Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Research, 2005, 33, e51-e51.	14.5	317
79	Rapid Isolation of Glomeruli Coupled with Gene Expression Profiling Identifies Downstream Targets in Pod1 Knockout Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 3247-3255.	6.1	46
80	Disrupted gonadogenesis and male-to-female sex reversal in <i>Pod1</i> knockout mice. Development (Cambridge), 2004, 131, 4095-4105.	2.5	148
81	Expression of Hairy/Enhancer of Split genes, Hes1 and Hes5, during murine nephron morphogenesis. Gene Expression Patterns, 2004, 4, 707-711.	0.8	78
82	The role of VEGF-A in glomerular development and function. Current Opinion in Nephrology and Hypertension, 2004, 13, 9-15.	2.0	152
83	Pod1 is required in stromal cells for glomerulogenesis. Developmental Dynamics, 2003, 226, 512-522.	1.8	94
84	MAMMALIAN KIDNEY DEVELOPMENT: MOLECULES TO TREATMENT. Fetal and Maternal Medicine Review, 2003, 14, 309-327.	0.3	1
85	Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. Journal of Clinical Investigation, 2003, 111, 707-716.	8.2	1,100
86	The Mouse Kreisler (Krml1/MafB) Segmentation Gene Is Required for Differentiation of Glomerular Visceral Epithelial Cells. Developmental Biology, 2002, 249, 16-29.	2.0	123
87	Transcriptional regulation of podocyte specification and differentiation. Microscopy Research and Technique, 2002, 57, 208-211.	2.2	57
88	Glomerular-Specific Gene Excision In Vivo. Journal of the American Society of Nephrology: JASN, 2002, 13, 788-793.	6.1	90
89	Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mechanisms of Development, 1998, 71, 37-48.	1.7	148