Jongho Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169753/publications.pdf

Version: 2024-02-01

			218677	501196
	28	4,138	26	28
p	apers	citations	h-index	g-index
	28	28	28	3230
	20	20	20	3230
a	ll docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10, 5047.	12.8	129
2	Atypical Receptor Kinase RINRK1 Required for Rhizobial Infection But Not Nodule Development in <i>Lotus japonicus (i). Plant Physiology, 2019, 181, 804-816.</i>	4.8	28
3	MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. Plant Physiology, 2017, 174, 326-338.	4.8	56
4	Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science, 2016, 352, 1102-1105.	12.6	230
5	Bacterialâ€induced calcium oscillations are common to nitrogenâ€fixing associations of nodulating legumes and nonâ€legumes. New Phytologist, 2015, 207, 551-558.	7.3	89
6	The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the <i>Medicago truncatula</i> Root. Plant Cell, 2015, 27, 3410-3424.	6.6	178
7	Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice. Plant Cell, 2015, 27, 823-838.	6.6	188
8	The receptor kinase <i><scp>CERK</scp>1</i> has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81, 258-267.	5.7	232
9	Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex Â. Plant Physiology, 2014, 166, 2077-2090.	4.8	81
10	Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations Â. Plant Physiology, 2012, 160, 2300-2310.	4.8	39
11	A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Current Biology, 2012, 22, 2236-2241.	3.9	262
12	<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	5.7	211
13	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 24, 1345-1358.	2.6	147
14	Nuclear membranes control symbiotic calcium signaling of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14348-14353.	7.1	191
15	Calcium Spiking Patterns and the Role of the Calcium/Calmodulin-Dependent Kinase CCaMK in Lateral Root Base Nodulation of <i>Sesbania rostrata</i> Â Â. Plant Cell, 2009, 21, 1526-1540.	6.6	75
16	Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?. PLoS ONE, 2009, 4, e6637.	2.5	18
17	Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2008, 20, 2681-2695.	6.6	189
18	Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9823-9828.	7.1	262

#	Article	IF	CITATIONS
19	Mastoparan Activates Calcium Spiking Analogous to Nod Factor-Induced Responses in Medicago truncatula Root Hair Cells. Plant Physiology, 2007, 144, 695-702.	4.8	46
20	The <i>Medicago truncatula</i> DMI1 Protein Modulates Cytosolic Calcium Signaling. Plant Physiology, 2007, 145, 192-203.	4.8	99
21	Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase. Plant Physiology, 2007, 144, 324-335.	4.8	404
22	Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant Journal, 2006, 46, 961-970.	5.7	204
23	Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant Journal, 2006, 48, 883-894.	5.7	150
24	Analysis of Nod-Factor-Induced Calcium Signaling in Root Hairs of Symbiotically Defective Mutants of Lotus japonicus. Molecular Plant-Microbe Interactions, 2006, 19, 914-923.	2.6	164
25	Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actIl-ORF4 transcription and actinorhodin biosynthesis. Molecular Microbiology, 2001, 39, 136-144.	2.5	76
26	Functional Analysis of relA and rshA, Two relA/spoT Homologues of Streptomyces coelicolor A3(2). Journal of Bacteriology, 2001, 183, 3488-3498.	2.2	71
27	Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3747-3752.	7.1	85
28	Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2) This paper is dedicated to the memory of Kathy Kendrick, whose devotion to understanding the biology of Streptomyces was unsurpassed Microbiology (United Kingdom), 1999, 145, 2221-2227.	1.8	234