Jari Pekka Tapani Valkonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169609/publications.pdf

Version: 2024-02-01

39 papers 2,163 citations

279798 23 h-index 289244 40 g-index

40 all docs

40 docs citations

40 times ranked

1870 citing authors

#	Article	IF	CITATIONS
1	ORGANIZATION OFGENESCONTROLLINGDISEASERESISTANCE IN THEPOTATOGENOME. Annual Review of Phytopathology, 2001, 39, 79-102.	7.8	412
2	Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. Plant Disease, 2012, 96, 168-185.	1.4	186
3	Viral Class 1 RNase III Involved in Suppression of RNA Silencing. Journal of Virology, 2005, 79, 7227-7238.	3.4	149
4	Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 2008, 9, 237-250.	4.2	140
5	Elimination of antiviral defense by viral RNase III. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10354-10358.	7.1	128
6	Assessment of the integral membrane protein topology in living cells. Plant Journal, 2006, 46, 145-154.	5.7	125
7	Unravelling the genetic diversity of the three main viruses involved in Sweet Potato Virus Disease (SPVD), and its practical implications. Molecular Plant Pathology, 2005, 6, 199-211.	4.2	107
8	Incidence of Viruses and Virus like Diseases of Sweetpotato in Uganda. Plant Disease, 2003, 87, 329-335.	1.4	87
9	Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. Journal of General Virology, 2008, 89, 573-582.	2.9	67
10	Involvement of a Class III Peroxidase and the Mitochondrial Protein TSPO in Oxidative Burst Upon Treatment of Moss Plants with a Fungal Elicitor. Molecular Plant-Microbe Interactions, 2012, 25, 363-371.	2.6	66
11	RNA silencingâ€mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (<i>Ipomoea batatas</i> L.) and development of sweetpotato virus disease following coâ€infection with a potyvirus. Molecular Plant Pathology, 2008, 9, 589-598.	4.2	61
12	Quicklyâ€released peroxidase of moss in defense against fungal invaders. New Phytologist, 2009, 183, 432-443.	7.3	61
13	dsRNA-mediated resistance to Beet Necrotic Yellow Vein Virus infections in sugar beet (Beta vulgaris L.) Tj ETQq1	1 0 78431 2.i	4 rgBT /Ove
14	Species-specific synergistic effects of two plant growthâ€"promoting microbes on green roof plant biomass and photosynthetic efficiency. PLoS ONE, 2018, 13, e0209432.	2.5	45
15	Moss-Erwinia pathosystem reveals possible similarities in pathogenesis and pathogen defense in vascular and nonvascular plants. Journal of General Plant Pathology, 2005, 71, 23-28.	1.0	41
16	Peronospora sparsa on Cultivated Rubus arcticus and Its Detection by PCR Based on ITS Sequences. Plant Disease, 1998, 82, 1304-1311.	1.4	38
17	Small-RNA Deep Sequencing Reveals Arctium tomentosum as a Natural Host of Alstroemeria virus X and a New Putative Emaravirus. PLoS ONE, 2012, 7, e42758.	2.5	37
18	Infection of the Sunagoke moss panels with fungal pathogens hampers sustainable greening in urban environments. Science of the Total Environment, 2011, 409, 3166-3173.	8.0	33

#	Article	IF	Citations
19	Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. Plant Methods, 2019, 15, 116.	4.3	33
20	Seedborne Pathogenic Fungi in Common Bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. PLoS ONE, 2016, 11, e0168662.	2.5	31
21	Evaluation of some North and South American potato breeding lines for resistance toPotato mop-top virus in Sweden. American Journal of Potato Research, 2002, 79, 205-210.	0.9	28
22	Geminiviruses Infecting Tomato Crops in Nicaragua. Plant Disease, 2000, 84, 843-846.	1.4	27
23	Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS ONE, 2017, 12, e0178242.	2.5	27
24	Genetic Variability and Evolutionary Implications of RNA Silencing Suppressor Genes in RNA1 of Sweet Potato Chlorotic Stunt Virus Isolates Infecting Sweetpotato and Related Wild Species. PLoS ONE, 2013, 8, e81479.	2.5	25
25	Fungi infecting cultivated moss can also cause diseases in crop plants. Annals of Applied Biology, 2012, 160, 298-307.	2.5	22
26	Suppression of RNAi by dsRNA-Degrading RNaselll Enzymes of Viruses in Animals and Plants. PLoS Pathogens, 2015, 11, e1004711.	4.7	22
27	Title is missing!. Molecular Breeding, 2000, 6, 95-104.	2.1	17
28	Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells. PLoS ONE, 2016, 11, e0159080.	2.5	16
29	The 2b Silencing Suppressor of a Mild Strain of <i>Cucumber mosaic virus</i> Alone Is Sufficient for Synergistic Interaction with <i>Tobacco mosaic virus</i> and Induction of Severe Leaf Malformation in 2b-Transgenic Tobacco Plants. Molecular Plant-Microbe Interactions, 2011, 24, 685-693.	2.6	15
30	Title is missing!. European Journal of Plant Pathology, 2002, 108, 327-335.	1.7	12
31	Binding and processing of small dsRNA molecules by the class 1 RNase III protein encoded by sweet potato chlorotic stunt virus. Journal of General Virology, 2014, 95, 486-495.	2.9	11
32	Case study: Planting methods and beneficial substrate microbes effect on the growth of vegetated roof plants in Finland. Urban Forestry and Urban Greening, 2020, 53, 126722.	5.3	10
33	Protection against potato virus Y (PVY) in the field in potatoes transformed with the PVY P1 Gene. American Journal of Potato Research, 2001, 78, 209-214.	0.9	9
34	Fungal pathogens infecting moss green roofs in Finland. Urban Forestry and Urban Greening, 2020, 55, 126812.	5.3	8
35	Residues R ¹⁹² and K ²²⁵ in RNA-Binding Pocket of Tobacco Vein Banding Mosaic Virus CP Control Virus Cell-to-Cell Movement and Replication. Molecular Plant-Microbe Interactions, 2021, 34, 658-668.	2.6	6
36	Next-Generation Sequencing-Based Detection of Common Bean Viruses in Wild Plants from Tanzania and Their Mechanical Transmission to Common Bean Plants. Plant Disease, 2021, 105, 2541-2550.	1.4	5

#	Article	IF	CITATIONS
37	<i>In Vitro</i> Identification and <i>In Vivo</i> Confirmation of Inhibitors for <i>Sweet Potato Chlorotic Stunt Virus</i> RNA Silencing Suppressor, a Viral RNase III. Journal of Virology, 2021, 95, .	3.4	3
38	Viral suppressor of <scp>RNA</scp> silencing in vascular plants also interferes with the development of the bryophyte <scp><i>Physcomitrella patens</i></scp> . Plant, Cell and Environment, 2022, 45, 220-235.	5.7	3
39	Development of FRETâ€based highâ€throughput screening for viral RNase III inhibitors. Molecular Plant Pathology, 2020, 21, 961-974.	4.2	3