Christopher R M Asquith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/416953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of 4â€anilinoâ€quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem, 2022, , .	3.2	2
2	The Kinase Chemogenomic Set (KCCS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	4.1	62
3	Design and evaluation of 1,2,3-dithiazoles and fused 1,2,4-dithiazines as anti-cancer agents. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128078.	2.2	7
4	Hinge Binder Scaffold Hopping Identifies Potent Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2) Inhibitor Chemotypes. Journal of Medicinal Chemistry, 2021, 64, 10849-10877.	6.4	22
5	Synthesis and Evaluation of Novel 1,2,6-Thiadiazinone Kinase Inhibitors as Potent Inhibitors of Solid Tumors. Molecules, 2021, 26, 5911.	3.8	4
6	Identification and evaluation of 4-anilinoquin(az)olines as potent inhibitors of both dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). Bioorganic and Medicinal Chemistry Letters, 2021, 52, 128407.	2.2	13
7	Optimization of 4-Anilinoquinolines as Dengue Virus Inhibitors. Molecules, 2021, 26, 7338.	3.8	5
8	Design and Analysis of the 4â€Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structureâ€Activity Relationships. ChemMedChem, 2020, 15, 26-49.	3.2	18
9	6-Bromo-N-(3-(difluoromethyl)phenyl)quinolin-4-amine. MolBank, 2020, 2020, M1161.	0.5	1
10	Targeting the Water Network in Cyclin Gâ€Associated Kinase (GAK) with 4â€Anilinoâ€quin(az)oline Inhibitors. ChemMedChem, 2020, 15, 1200-1215.	3.2	9
11	Potent antiviral activity of novel multi-substituted 4-anilinoquin(az)olines. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127284.	2.2	24
12	Synthesis of (R) and (S)-3-Chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-ones. MolBank, 2020, 2020, M1139.	0.5	2
13	Synthesis of (R) and (S)-3-Chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-4-ones. MolBank, 2020, 2020, M1128.	0.5	1
14	Antimicrobial and Antifungal Activity of Rare Substituted 1,2,3-Thiaselenazoles and Corresponding Matched Pair 1,2,3-Dithiazoles. Antibiotics, 2020, 9, 369.	3.7	8
15	New Insights into 4-Anilinoquinazolines as Inhibitors of Cardiac Troponin I–Interacting Kinase (TNNi3K). Molecules, 2020, 25, 1697.	3.8	7
16	Targeting an EGFR Water Network with 4â€Anilinoquin(az)oline Inhibitors for Chordoma. ChemMedChem, 2019, 14, 1693-1700.	3.2	27
17	Anti-tubercular activity of novel 4-anilinoquinolines and 4-anilinoquinazolines. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2695-2699.	2.2	16
18	Novel epidithiodiketopiperazines as anti-viral zinc ejectors of the Feline Immunodeficiency Virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorganic and Medicinal Chemistry, 2019, 27, 4174-4184.	3.0	6

#	Article	IF	CITATIONS
19	6-Bromo-N-(2-methyl-2H-benzo[d][1,2,3]triazol-5-yl)quinolin-4-amine. MolBank, 2019, 2019, M1087.	0.5	4
20	Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1765-1768.	2.2	25
21	Utilizing comprehensive and mini-kinome panels to optimize the selectivity of quinoline inhibitors for cyclin G associated kinase (GAK). Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1727-1731.	2.2	24
22	Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma. Journal of Medicinal Chemistry, 2019, 62, 4772-4778.	6.4	34
23	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	6.4	56
24	Quinazoline-Based Antivirulence Compounds Selectively Target <i>Salmonella</i> PhoP/PhoQ Signal Transduction System. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	23
25	Towards the Development of an In vivo Chemical Probe for Cyclin G Associated Kinase (GAK). Molecules, 2019, 24, 4016.	3.8	16
26	Synthesis and Identification of Pentathiepin-Based Inhibitors of Sporothrix brasiliensis. Antibiotics, 2019, 8, 249.	3.7	5
27	Exploration and Development of a C–H-Activated Route to Access the [1,2]Dithiolo[4,3-b]indole-3(4H)-thione Core and Related Derivatives. Synlett, 2019, 30, 156-160.	1.8	3
28	Investigation of the Pentathiepin Functionality as an Inhibitor of Feline Immunodeficiency Virus (FIV) via a Potential Zinc Ejection Mechanism, as a Model for HIV Infection. ChemMedChem, 2019, 14, 454-461.	3.2	9
29	ADCK3/COQ8A: the choice target of the UbiB protein kinase-like family. Nature Reviews Drug Discovery, 2019, 18, 815-815.	46.4	15
30	Identification and Optimization of 4â€Anilinoquinolines as Inhibitors of Cyclinâ€G Associated Kinase. ChemMedChem, 2018, 13, 48-66.	3.2	51
31	Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data. PLoS ONE, 2018, 13, e0201321.	2.5	5
32	1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors. Molecules, 2018, 23, 1221.	3.8	23
33	Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning. Journal of Chemical Education, 2017, 94, 1265-1271.	2.3	41
34	Evaluation of Substituted 1,2,3â€Dithiazoles as Inhibitors of the Feline Immunodeficiency Virus (FIV) Nucleocapsid Protein via a Proposed Zinc Ejection Mechanism. ChemMedChem, 2016, 11, 2119-2126.	3.2	20
35	Novel fused tetrathiocines as antivirals that target the nucleocapsid zinc finger containing protein of the feline immunodeficiency virus (FIV) as a model of HIV infection. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1352-1355.	2.2	16
36	Evaluation of the antiviral efficacy of bis[1,2]dithiolo[1,4]thiazines and bis[1,2]dithiolopyrrole derivatives against the nucelocapsid protein of the Feline Immunodeficiency Virus (FIV) as a model for HIV infection. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2640-2644.	2.2	17