Christoph Nitsche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169255/publications.pdf

Version: 2024-02-01

43 papers 2,783 citations

218677 26 h-index 265206 42 g-index

48 all docs

48 docs citations

times ranked

48

3574 citing authors

#	Article	IF	CITATIONS
1	The SARS-CoV-2 main protease as drug target. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127377.	2.2	550
2	Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 2016, 353, 503-505.	12.6	285
3	Promiscuity and Selectivity in Covalent Enzyme Inhibition: AÂSystematic Study of Electrophilic Fragments. Journal of Medicinal Chemistry, 2014, 57, 7590-7599.	6.4	134
4	Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorganic and Medicinal Chemistry Letters, 2022, 62, 128629.	2.2	131
5	Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 98-99, 20-49.	7. 5	125
6	Biochemistry and Medicinal Chemistry of the Dengue Virus Protease. Chemical Reviews, 2014, 114, 11348-11381.	47.7	120
7	The Medicinal Chemistry of Dengue Virus. Journal of Medicinal Chemistry, 2016, 59, 5622-5649.	6.4	114
8	Thiazolidinone–Peptide Hybrids as Dengue Virus Protease Inhibitors with Antiviral Activity in Cell Culture. Journal of Medicinal Chemistry, 2013, 56, 8389-8403.	6.4	110
9	Peptide–Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal Chemistry and Structural Biology. Journal of Medicinal Chemistry, 2017, 60, 511-516.	6.4	105
10	Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases. Bioorganic and Medicinal Chemistry, 2011, 19, 7318-7337.	3.0	90
11	Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Research, 2012, 94, 72-79.	4.1	78
12	Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7719-7733.	6.4	69
13	<i>De Novo</i> Discovery of Nonstandard Macrocyclic Peptides as Noncompetitive Inhibitors of the Zika Virus NS2B-NS3 Protease. ACS Medicinal Chemistry Letters, 2019, 10, 168-174.	2.8	62
14	Inhibitors of the Zika virus protease NS2B-NS3. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126965.	2.2	56
15	Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. Journal of the American Chemical Society, 2016, 138, 4539-4546.	13.7	53
16	C-Terminal Residue Optimization and Fragment Merging: Discovery of a Potent Peptide-Hybrid Inhibitor of Dengue Protease. ACS Medicinal Chemistry Letters, 2014, 5, 1037-1042.	2.8	51
17	Proteases from dengue, West Nile and Zika viruses as drug targets. Biophysical Reviews, 2019, 11, 157-165.	3.2	51
18	NMR studies of ligand binding. Current Opinion in Structural Biology, 2018, 48, 16-22.	5.7	48

#	Article	IF	CITATIONS
19	The dengue virus NS2B–NS3 protease retains the closed conformation in the complex with BPTI. FEBS Letters, 2014, 588, 2206-2211.	2.8	46
20	Biocompatible Macrocyclization between Cysteine and 2-Cyanopyridine Generates Stable Peptide Inhibitors. Organic Letters, 2019, 21, 4709-4712.	4.6	46
21	Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease. Antiviral Research, 2017, 142, 141-147.	4.1	45
22	Aqueous microwave-assisted one-pot synthesis of N-substituted rhodanines. Tetrahedron Letters, 2012, 53, 5197-5201.	1.4	42
23	Dual inhibitors of the dengue and West Nile virus NS2B–NS3 proteases: Synthesis, biological evaluation and docking studies of novel peptide-hybrids. Bioorganic and Medicinal Chemistry, 2015, 23, 5748-5755.	3.0	37
24	Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chemical Reviews, 2022, 122, 9571-9642.	47.7	36
25	Strategies Towards Protease Inhibitors for Emerging Flaviviruses. Advances in Experimental Medicine and Biology, 2018, 1062, 175-186.	1.6	33
26	Cytotoxic betulin-derived hydroxypropargylamines trigger apoptosis. Bioorganic and Medicinal Chemistry, 2013, 21, 425-435.	3.0	29
27	Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chemical Science, 2022, 13, 3826-3836.	7.4	29
28	Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128333.	2.2	26
29	A biocompatible stapling reaction for <i>in situ</i> generation of constrained peptides. Chemical Science, 2021, 12, 669-674.	7.4	25
30	Small neutral Gd(<scp>iii</scp>) tags for distance measurements in proteins by double electron–electron resonance experiments. Physical Chemistry Chemical Physics, 2018, 20, 23535-23545.	2.8	22
31	2-Cyanoisonicotinamide Conjugation: A Facile Approach to Generate Potent Peptide Inhibitors of the Zika Virus Protease. ACS Medicinal Chemistry Letters, 2021, 12, 732-737.	2.8	21
32	Fluorimetric and HPLC-Based Dengue Virus Protease Assays Using a FRET Substrate. Methods in Molecular Biology, 2013, 1030, 221-236.	0.9	19
33	Site-selective tagging of proteins by pnictogen-mediated self-assembly. Chemical Communications, 2017, 53, 10894-10897.	4.1	15
34	Genetic Encoding of Cyanopyridylalanine for Inâ€Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
35	Peptide–Bismuth Bicycles: In Situ Access to Stable Constrained Peptides with Superior Bioactivity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
36	Catching a Moving Target: Comparative Modeling of Flaviviral NS2B-NS3 Reveals Small Molecule Zika Protease Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 514-520.	2.8	10

3

CHRISTOPH NITSCHE

#	Article	IF	CITATIONS
37	Trimethylsilyl tag for probing protein–ligand interactions by NMR. Journal of Biomolecular NMR, 2018, 70, 211-218.	2.8	9
38	Intrinsic and Extrinsic Paramagnetic Probes. New Developments in NMR, 2018, , 42-84.	0.1	9
39	Targeting the protease of West Nile virus. RSC Medicinal Chemistry, 2021, 12, 1262-1272.	3.9	6
40	Nanoparticular Inhibitors of Flavivirus Proteases from Zika, West Nile and Dengue Virus Are Cell-Permeable Antivirals. ACS Medicinal Chemistry Letters, 2021, 12, 1955-1961.	2.8	3
41	Peptide–Bismuth Bicycles: In Situ Access to Stable Constrained Peptides with Superior Bioactivity. Angewandte Chemie, 2022, 134, .	2.0	3
42	Organoarsenic probes to study proteins by NMR spectroscopy. Chemical Communications, 2022, 58, 701-704.	4.1	1
43	Genetic Encoding of Cyanopyridylalanine for Inâ€Cell Protein Macrocyclization by the Nitrileâ€Aminothiol Click Reaction. Angewandte Chemie, 0, , .	2.0	0