Ramon Moreno Tost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169193/publications.pdf

Version: 2024-02-01

86 papers 4,282 citations

35 h-index

109321

64 g-index

88 all docs 88 docs citations

88 times ranked 4542 citing authors

#	Article	IF	Citations
1	Synthesis of Porous Clay Heterostructures Modified with SiO ₂ –ZrO ₂ Nanoparticles for the Valorization of Furfural in Oneâ€Pot Process. Advanced Sustainable Systems, 2022, 6, .	5.3	6
2	Tailoring the selectivity of Cu-based catalysts in the furfural hydrogenation reaction: Influence of the morphology of the silica support. Fuel, 2022, 319, 123827.	6.4	16
3	Influence of morphology of zirconium-doped mesoporous silicas on 5-hydroxymethylfurfural production from mono-, di- and polysaccharides. Catalysis Today, 2021, 367, 297-309.	4.4	6
4	Evaluation of the ZrO2/Al2O3 system as catalysts in the catalytic transfer hydrogenation of furfural to obtain furfuryl alcohol. Applied Catalysis A: General, 2021, 609, 117905.	4.3	32
5	Glycerol etherification towards selective diglycerol over mixed oxides derived from hydrotalcites: effect of Ni loading. Journal of Sol-Gel Science and Technology, 2021, 97, 351-364.	2.4	14
6	Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 510, 111685.	2.0	6
7	PdO Supported on TiO ₂ for the Oxidative Condensation of Furfural with Ethanol: Insights on Reactivity and Product Selectivity. ACS Sustainable Chemistry and Engineering, 2021, 9, 10100-10112.	6.7	7
8	Synthesis of catalysts by pyrolysis of Cu-chitosan complexes and their evaluation in the hydrogenation of furfural to value-added products. Molecular Catalysis, 2021, 512, 111774.	2.0	4
9	Gas phase hydrogenation of furfural to obtain valuable products using commercial Cr-free catalysts as an environmentally sustainable alternative to copper chromite. Journal of Environmental Chemical Engineering, 2021, 9, 105468.	6.7	14
10	Porous SiO ₂ Nanospheres Modified with ZrO ₂ and Their Use in One-Pot Catalytic Processes to Obtain Value-Added Chemicals from Furfural. Industrial & Engineering Chemistry Research, 2021, 60, 18791-18805.	3.7	10
11	Glycerol Oligomerization Using Low Cost Dolomite Catalyst. Waste and Biomass Valorization, 2020, 11, 1499-1512.	3.4	22
12	Oxidative Condensation of Furfural with Ethanol Using Pd-Based Catalysts: Influence of the Support. Catalysts, 2020, 10, 1309.	3.5	6
13	Recovery of pentoses-containing olive stones for their conversion into furfural in the presence of solid acid catalysts. Chemical Engineering Research and Design, 2020, 143, 1-13.	5 . 6	6
14	The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts. Molecular Catalysis, 2020, 487, 110889.	2.0	9
15	Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	4.1	60
16	Production of Biofuels by 5-Hydroxymethylfurfural Etherification Using Ion-Exchange Resins as Solid Acid Catalysts. , 2020, 2, .		0
17	Synergistic effect between CaCl2 and \hat{I}^3 -Al2O3 for furfural production by dehydration of hemicellulosic carbohydrates. Applied Catalysis A: General, 2019, 585, 117188.	4.3	17
18	Mesoporous Materials: From Synthesis to Applications. International Journal of Molecular Sciences, 2019, 20, 3213.	4.1	27

#	Article	IF	CITATIONS
19	Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites. Applied Clay Science, 2019, 183, 105351.	5.2	31
20	Purolite-Catalyzed Etherification of 2,5-Bis(hydroxymethyl)furan: A Systematic Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 10221-10226.	6.7	27
21	Selective Production of Furan from Gas-Phase Furfural Decarbonylation on Ni-MgO Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 7676-7685.	6.7	42
22	Sustainable Production of Carbon Nanoparticles from Olive Pit Biomass: Understanding Proton Transfer in the Excited State on Carbon Dots. ACS Sustainable Chemistry and Engineering, 2019, 7, 10493-10500.	6.7	26
23	Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. International Journal of Molecular Sciences, 2019, 20, 828.	4.1	25
24	Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas. Applied Catalysis A: General, 2018, 556, 1-9.	4.3	87
25	Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped mesoporous silica catalyst. Case study: Glycerol dehydration. Applied Catalysis B: Environmental, 2018, 221, 158-168.	20.2	52
26	Porous Silicon-Based Catalysts for the Dehydration of Glycerol to High Value-Added Products. Materials, 2018, 11, 1569.	2.9	8
27	Promotion effect of Ce or Zn oxides for improving furfuryl alcohol yield in the furfural hydrogenation using inexpensive Cu-based catalysts. Molecular Catalysis, 2018, 455, 121-131.	2.0	40
28	Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catalysis Today, 2017, 279, 327-338.	4.4	73
29	Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions. Applied Catalysis A: General, 2017, 537, 66-73.	4.3	36
30	Selective Production of 2â€Methylfuran by Gasâ€Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts. ChemSusChem, 2017, 10, 1448-1459.	6.8	49
31	Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Applied Catalysis B: Environmental, 2017, 206, 617-625.	20.2	74
32	Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay Minerals. Topics in Catalysis, 2017, 60, 1040-1053.	2.8	42
33	Glycerol oligomers production by etherification using calcined eggshell as catalyst. Molecular Catalysis, 2017, 433, 282-290.	2.0	28
34	Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, 2017, 83, 342-354.	2.4	9
35	Nickel Phosphide/Silica Catalysts for the Gasâ€Phase Hydrogenation of Furfural to High–Added–Value Chemicals. ChemCatChem, 2017, 9, 2881-2889.	3.7	36
36	WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied Catalysis A: General, 2016, 516, 30-40.	4.3	37

#	Article	IF	Citations
37	Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. Journal of Catalysis, 2016, 336, 107-115.	6.2	180
38	Vapor Phase Decarbonylation of Furfural to Furan over Nickel Supported on SBA-15 Silica Catalysts. Modern Research in Catalysis, 2016, 05, 85-94.	1.7	13
39	V and V–P containing Zr-SBA-15 catalysts for dehydration of glycerol to acrolein. Catalysis Today, 2015, 254, 43-52.	4.4	38
40	Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein. Applied Catalysis B: Environmental, 2015, 179, 139-149.	20.2	60
41	Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. Journal of Molecular Catalysis A, 2014, 383-384, 106-113.	4.8	149
42	Glycerol valorization by etherification to polyglycerols by using metal oxides derived from MgFe hydrotalcites. Applied Catalysis A: General, 2014, 470, 199-207.	4.3	68
43	Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catalysis Today, 2014, 234, 119-124.	4.4	62
44	Solid luminescent CdSeâ€thiolated porous phosphate heterostructures. Application in fingermark detection in different surfaces. Surface and Interface Analysis, 2013, 45, 612-618.	1.8	16
45	Dehydration of Xylose to Furfural over MCMâ€41â€6upported Niobiumâ€Oxide Catalysts. ChemSusChem, 2013, 6, 635-642.	6.8	80
46	Calcium zincate derived heterogeneous catalyst for biodiesel production by ethanolysis. Fuel, 2013, 105, 518-522.	6.4	32
47	Optical Characterization of CdS Quantum Dots Nanoparticles Dispersed in Clays. Journal of Dispersion Science and Technology, 2012, 33, 1139-1143.	2.4	1
48	Zirconium doped mesoporous silica catalysts for dehydration of glycerol to high added-value products. Applied Catalysis A: General, 2012, 433-434, 179-187.	4.3	59
49	CdS Quantum Dots Nanoparticles Dispersed in Zeolites. Optical Study. Journal of Dispersion Science and Technology, 2012, 33, 786-791.	2.4	4
50	Niobium-containing MCM-41 silica catalysts for biodiesel production. Applied Catalysis B: Environmental, 2011, 108-109, 161-167.	20.2	64
51	Preparation, characterization and catalytic applications of ZrO2 supported on low cost SBA-15. Adsorption, 2011, 17, 527-538.	3.0	11
52	Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catalysis Today, 2011, 167, 84-90.	4.4	81
53	Adsorption and separation of propane and propylene by porous hexacyanometallates. Applied Surface Science, 2011, 257, 2461-2466.	6.1	17
54	Modelling of NOx emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems. Energy Conversion and Management, 2011, 52, 2945-2951.	9.2	24

#	Article	IF	CITATIONS
55	CdS nanocomposites assembled in porous phosphate heterostructures for fingerprint detection. Optical Materials, 2011, 33, 893-898.	3.6	46
56	Porous phosphate heterostructures containing CdS quantum dots: assembly, characterization and photoluminescence. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 67, 225-232.	1.6	4
57	Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catalysis Today, 2010, 149, 281-287.	4.4	140
58	Study of nanoporous catalysts in the selective catalytic reduction of NOx. Catalysis Today, 2010, 158, 78-88.	4.4	6
59	Thiophene Adsorption on Microporous Activated Carbons Impregnated with PdCl ₂ . Energy & Lamp; Fuels, 2010, 24, 3436-3442.	5.1	34
60	Base Catalysts Derived from Hydrocalumite for the Transesterification of Sunflower Oil. Energy & Energ	5.1	52
61	Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis. , 2010, , 423-446.		0
62	Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. Journal of Catalysis, 2009, 266, 129-144.	6.2	342
63	CO Preferential Oxidation Activity of CuO/CeO2 Supported on Zirconium Doped Mesoporous MSU Type Silica. Catalysis Letters, 2009, 129, 323-330.	2.6	20
64	Adsorption and separation of light alkane hydrocarbons by porous hexacyanocobaltates (III). Surface and Interface Analysis, 2009, 41, 730-734.	1.8	13
65	Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal of Molecular Catalysis A, 2009, 300, 19-24.	4.8	68
66	Al-SBA-15 as a support of catalysts based on chromium sulfide for sulfur removal. Catalysis Today, 2009, 143, 137-144.	4.4	16
67	Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions. Applied Catalysis B: Environmental, 2009, 91, 339-346.	20.2	61
68	Simulation of SCR equipped vehicles using iron-zeolite catalysts. Applied Catalysis A: General, 2009, 366, 13-21.	4.3	10
69	A study of copper-exchanged mordenite natural and ZSM-5 zeolites as SCR–NOx catalysts for diesel road vehicles: Simulation by neural networks approach. Applied Catalysis B: Environmental, 2009, 88, 420-429.	20.2	57
70	DIESEL EXHAUST EMISSION CONTROL BY SELECTIVE CATALYTIC REDUCTION OF NOX WITH AMMONIA ON METAL/ZEOLITE CATALYSTS. International Journal of Energy for A Clean Environment, 2009, 10, 103-120.	1.1	0
71	Novel mesoporous aluminosilicate supported palladium-rhodium catalysts for diesel upgrading. Applied Catalysis A: General, 2008, 340, 257-264.	4.3	19
72	CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General, 2008, 334, 35-43.	4.3	281

#	Article	IF	CITATIONS
73	MgM (M=Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A: General, 2008, 347, 162-168.	4.3	86
74	Adsorption properties of natural and $Cu(II)$, $Zn(II)$, $Ag(I)$ exchanged Cuban mordenites. Microporous and Mesoporous Materials, 2008, 108, 325-332.	4.4	11
75	Evaluation of Cu-PPHs as active catalysts for the SCR process to control NOx emissions from heavy duty diesel vehicles. Chemosphere, 2008, 72, 608-615.	8.2	25
76	Potassium leaching during triglyceride transesterification using K/\hat{l}^3 -Al2O3 catalysts. Catalysis Communications, 2007, 8, 2074-2080.	3.3	149
77	Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 2007, 73, 317-326.	20.2	677
78	Evaluation of the acid properties of porous zirconium-doped and undoped silica materials. Journal of Solid State Chemistry, 2006, 179, 2182-2189.	2.9	28
79	Cobalt–iridium impregnated zirconium-doped mesoporous silica as catalysts for the selective catalytic reduction of NO with ammonia. Journal of Molecular Catalysis A, 2006, 248, 126-134.	4.8	27
80	Pd/Pt on Ti-containing Mixed Oxides as Dearomatization Catalysts: Physico-chemical Characterization and Activity. Catalysis Letters, 2005, 104, 29-37.	2.6	3
81	Selective Catalytic Reduction of Nitric Oxide by Ammonia over Ag and Zn-Exchanged Cuban Natural Zeolites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2253-2257.	1.2	12
82	Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites. Applied Catalysis B: Environmental, 2004, 50, 279-288.	20.2	54
83	NO reduction with ammonia employing Co/Pt supported on a mesoporous silica containing zirconium as a low temperature selective reduction catalyst. Applied Catalysis B: Environmental, 2004, 52, 241-249.	20.2	13
84	Nickel oxide supported on zirconium-doped mesoporous silica for selective catalytic reduction of NO with NH3. Journal of Materials Chemistry, 2002, 12, 3331-3336.	6.7	35
85	Cobalt supported on zirconium doped mesoporous silica: a selective catalyst for reduction of NO with ammonia at low temperatures. Applied Catalysis B: Environmental, 2002, 38, 51-60.	20.2	33
86	Title is missing!. Catalysis Letters, 2002, 82, 205-212.	2.6	16