Denitsa Eckweiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4168634/publications.pdf

Version: 2024-02-01

32 papers 1,376 citations

331670 21 h-index 32 g-index

32 all docs 32 docs citations 32 times ranked 2123 citing authors

#	Article	IF	CITATIONS
1	Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in $\langle i \rangle$ Salmonella enterica $\langle i \rangle$ Serovar Typhimurium. MBio, 2018, 9, .	4.1	53
2	Iron Regulation in Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 3183.	3. 5	49
3	PRODORIC2: the bacterial gene regulation database in 2018. Nucleic Acids Research, 2018, 46, D320-D326.	14.5	32
4	Antisense transcription in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2018, 164, 889-895.	1.8	10
5	Identification of a <i>Pseudomonas aeruginosa</i> PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles. MBio, 2017, 8, .	4.1	32
6	FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae. Frontiers in Microbiology, 2017, 8, 642.	3.5	18
7	Functional modules of sigma factor regulons guarantee adaptability and evolvability. Scientific Reports, 2016, 6, 22212.	3.3	22
8	Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2016, 60, 4722-4733.	3.2	67
9	$\mbox{\sc i}\mbox{\sc aroA}\mbox{\sc /i}\sc -Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant. MBio, 2016, 7, .$	4.1	62
10	Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs. Journal of Bacteriology, 2016, 198, 138-146.	2.2	15
11	Deep transcriptome profiling of clinical <scp><i>K</i></scp> <i>lebsiella pneumoniae</i> isolates reveals strain and sequence typeâ€specific adaptation. Environmental Microbiology, 2015, 17, 4690-4710.	3.8	31
12	Elucidation of Sigma Factor-Associated Networks in Pseudomonas aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk. PLoS Pathogens, 2015, 11, e1004744.	4.7	134
13	The Pseudomonas aeruginosa Transcriptional Landscape Is Shaped by Environmental Heterogeneity and Genetic Variation. MBio, 2015, 6, e00749.	4.1	73
14	Contribution of Veillonella parvula to Pseudomonas aeruginosa-Mediated Pathogenicity in a Murine Tumor Model System. Infection and Immunity, 2015, 83, 417-429.	2.2	47
15	Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in <i>Pseudomonas aeruginosa </i>	14.5	54
16	<i>In Vivo</i> mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio, 2014, 5, e01075-14.	4.1	63
17	Complete Genome Sequence of Highly Adherent Pseudomonas aeruginosa Small-Colony Variant SCV20265. Genome Announcements, 2014, 2, .	0.8	13
18	The extensive set of accessory <i>Pseudomonas aeruginosa</i> genomic components. FEMS Microbiology Letters, 2014, 356, 235-241.	1.8	55

#	Article	IF	CITATIONS
19	Identification of the Alternative Sigma Factor SigX Regulon and Its Implications for Pseudomonas aeruginosa Pathogenicity. Journal of Bacteriology, 2014, 196, 345-356.	2.2	55
20	3DTF: a web server for predicting transcription factor PWMs using 3D structure-based energy calculations. Nucleic Acids Research, 2012, 40, W180-W185.	14.5	15
21	The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing. PLoS ONE, 2012, 7, e31092.	2.5	212
22	Creating PWMs of transcription factors using 3D structure-based computation of protein-DNA free binding energies. BMC Bioinformatics, 2010, 11, 225.	2.6	20
23	Deposition of copper clusters on the Cu(111) surface. Surface Science, 2008, 602, 1413-1422.	1.9	22
24	Dynamics of protein-protein encounter: A Langevin equation approach with reaction patches. Journal of Chemical Physics, 2008, 129, 155106.	3.0	36
25	Theoretical Studies of Structural, Energetic, and Electronic Properties of Clusters. Zeitschrift Fur Physikalische Chemie, 2008, 222, 387-405.	2.8	3
26	Formation of stable products from cluster–cluster collisions. Journal of Physics Condensed Matter, 2007, 19, 346204.	1.8	5
27	Theoretical Study of the Structure and Energetics of Silver Clusters. Journal of Physical Chemistry C, 2007, 111, 12577-12587.	3.1	32
28	Deposition of Ni 13 and Cu 13 clusters on Ni(111) and Cu(111) surfaces. European Physical Journal D, 2007, 45, 425-431.	1.3	3
29	Structure and energetics of CuNclusters with (2 â @ $\frac{1}{2}$ N â @ $\frac{1}{2}$ 150): An embedded-atom-method study. Physical Review B, 2006, 73, .	3.2	87
30	Theoretical Study of Structure and Energetics of Gold Clusters with the EAM Method. Zeitschrift Fur Physikalische Chemie, 2006, 220, 811-829.	2.8	16
31	Structure and energetics of nickel, copper, and gold clusters. European Physical Journal D, 2005, 34, 187-190.	1.3	34
32	Structure and Magnetic Interaction in Organic Radical Crystals. 6. Spin-Transfer Crystals:  A Theoretical Study. Journal of Physical Chemistry B, 2002, 106, 2901-2909.	2.6	6