
Mark M Chong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4168109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DROSHA but not DICER is required for human haematopoietic stem cell function. Clinical and Translational Immunology, 2022, 11, e1361.	3.8	1
2	Inhibition of the antigen-presenting ability of dendritic cells by non-structural protein 2 of influenza A virus. Veterinary Microbiology, 2022, 267, 109392.	1.9	1
3	Expression of the miRâ€17~92a cluster of microRNAs by regulatory T cells controls blood glucose homeostasis. Immunology and Cell Biology, 2022, 100, 101-111.	2.3	0
4	A comparison of alternative mRNA splicing in the CD4 and CD8 T cell lineages. Molecular Immunology, 2021, 133, 53-62.	2.2	9
5	Single-Cell RNA Sequencing Approaches for Tracing T Cell Development. Journal of Immunology, 2021, 207, 363-370.	0.8	4
6	Regulating gene expression in animals through RNA endonucleolytic cleavage. Heliyon, 2018, 4, e00908.	3.2	16
7	Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon–Dependent Pathway. Diabetes, 2017, 66, 3041-3050.	0.6	17
8	A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nature Immunology, 2016, 17, 1300-1311.	14.5	288
9	miRNAs Are Essential for the Regulation of the PI3K/AKT/FOXO Pathway and Receptor Editing during BÂCell Maturation. Cell Reports, 2016, 17, 2271-2285.	6.4	34
10	Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood, 2016, 127, 1743-1751.	1.4	79
11	MicroRNAs in CD4 + T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. Journal of Autoimmunity, 2016, 68, 52-61.	6.5	42
12	A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. PLoS ONE, 2015, 10, e0134326.	2.5	11
13	Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nature Communications, 2015, 6, 6253.	12.8	59
14	Early postnatal ablation of the microRNA-processing enzyme, Drosha, causes chondrocyte death and impairs the structural integrity of the articular cartilage. Osteoarthritis and Cartilage, 2015, 23, 1214-1220.	1.3	32
15	Drosha controls dendritic cell development by cleaving messenger RNAs encoding inhibitors of myelopoiesis. Nature Immunology, 2015, 16, 1134-1141.	14.5	32
16	A microRNA expression atlas of mouse dendritic cell development. Immunology and Cell Biology, 2015, 93, 480-485.	2.3	9
17	The role of microRNAs in lymphopoiesis. International Journal of Hematology, 2014, 100, 246-253.	1.6	32
18	The miR-17â^¼92a Cluster of MicroRNAs Is Required for the Fitness of Foxp3+ Regulatory T Cells. PLoS ONE, 2014, 9, e88997.	2.5	19

Mark M Chong

#	Article	IF	CITATIONS
19	MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biology, 2013, 3, 130144.	3.6	70
20	Inducible deletion of epidermal <i>Dicer</i> and <i>Drosha</i> reveals multiple functions for miRNAs in postnatal skin. Development (Cambridge), 2012, 139, 1405-1416.	2.5	80
21	Dynamic MicroRNA Gene Transcription and Processing during T Cell Development. Journal of Immunology, 2012, 188, 3257-3267.	0.8	80
22	Drosha regulates neurogenesis by controlling Neurogenin 2 expression independent of microRNAs. Nature Neuroscience, 2012, 15, 962-969.	14.8	117
23	DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature, 2011, 471, 325-330.	27.8	573
24	RUNX Transcription Factor-Mediated Association of Cd4 and Cd8 Enables Coordinate Gene Regulation. Immunity, 2011, 34, 303-314.	14.3	32
25	Many routes to a micro RNA. IUBMB Life, 2011, 63, 972-978.	3.4	17
26	The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney International, 2011, 80, 719-730.	5.2	105
27	A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 2010, 465, 584-589.	27.8	929
28	Epigenetic propagation of CD4 expression is established by the <i>Cd4</i> proximal enhancer in helper T cells. Genes and Development, 2010, 24, 659-669.	5.9	58
29	Canonical and alternate functions of the microRNA biogenesis machinery. Genes and Development, 2010, 24, 1951-1960.	5.9	203
30	Diverse Endonucleolytic Cleavage Sites in the Mammalian Transcriptome Depend upon MicroRNAs, Drosha, and Additional Nucleases. Molecular Cell, 2010, 38, 781-788.	9.7	170
31	Runx-CBFÎ ² complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 2009, 10, 1170-1177.	14.5	181
32	Plasticity of CD4+ T Cell Lineage Differentiation. Immunity, 2009, 30, 646-655.	14.3	1,306
33	Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. Journal of Experimental Medicine, 2009, 206, 2701-2715.	8.5	183
34	TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature, 2008, 453, 236-240.	27.8	1,649
35	Perturbed thymopoiesis in vitro in the absence of suppressor of cytokine signalling 1 and 3. Molecular Immunology, 2008, 45, 2888-2896.	2.2	9
36	The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. Journal of Experimental Medicine, 2008, 205, 2449-2449.	8.5	12

Mark M Chong

#	Article	IF	CITATIONS
37	The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. Journal of Experimental Medicine, 2008, 205, 2005-2017.	8.5	343
38	Perforin and Fas induced by IFNÎ ³ and TNFα mediate beta cell death by OT-I CTL. International Immunology, 2006, 18, 837-846.	4.0	52
39	Suppressor of cytokine signaling-1 in T cells and macrophages is critical for preventing lethal inflammation. Blood, 2005, 106, 1668-1675.	1.4	79
40	Socs1 Deficiency Enhances Hepatic Insulin Signaling. Journal of Biological Chemistry, 2005, 280, 31516-31521.	3.4	35
41	Virus-host interactions: new insights from the small RNA world. Genome Biology, 2005, 6, 238.	9.6	11
42	Suppressor of Cytokine Signaling-1 Overexpression Protects Pancreatic Î ² Cells from CD8+ T Cell-Mediated Autoimmune Destruction. Journal of Immunology, 2004, 172, 5714-5721.	0.8	96
43	Severe Pancreatitis with Exocrine Destruction and Increased Islet Neogenesis in Mice with Suppressor of Cytokine Signaling-1 Deficiency. American Journal of Pathology, 2004, 165, 913-921.	3.8	23
44	Suppressor of Cytokine Signaling-1 Is a Critical Regulator of Interleukin-7-Dependent CD8+ T Cell Differentiation. Immunity, 2003, 18, 475-487.	14.3	155
45	Suppressor of Cytokine Signaling-1 Regulates Signaling in Response to Interleukin-2 and Other γc-dependent Cytokines in Peripheral T Cells. Journal of Biological Chemistry, 2003, 278, 22755-22761.	3.4	113
46	Fas Is Detectable on β Cells in Accelerated, But Not Spontaneous, Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2003, 170, 6292-6297.	0.8	43
47	The Role of Cytokines as Effectors of Tissue Destruction in Autoimmunity. Advances in Experimental Medicine and Biology, 2003, 520, 73-86.	1.6	10
48	Suppressor of Cytokine Signaling-1 Regulates the Sensitivity of Pancreatic β Cells to Tumor Necrosis Factor. Journal of Biological Chemistry, 2002, 277, 27945-27952.	3.4	68
49	Â-Interferon Signaling in Pancreatic Â-Cells Is Persistent but Can Be Terminated by Overexpression of Suppressor of Cytokine Signaling-1. Diabetes, 2001, 50, 2744-2751.	0.6	43