List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved thermal stability of the nearâ€infrared Alâ€modulated Zn ₃ Ga ₂ GeO ₈ : Cr ³⁺ phosphors for plant growth applications. Journal of the American Ceramic Society, 2022, 105, 966-976.	3.8	18
2	Multiple Anti-Counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4: Yb3+, Er3+, Bi3+ phosphor. Chemical Engineering Journal, 2022, 429, 132333.	12.7	71
3	Enhancement of solar-driven photocatalytic activity of oxygen vacancy-rich Bi/BiOBr/Sr2LaF7:Yb3+,Er3+ composites through synergetic strategy of upconversion function and plasmonic effect. Journal of Environmental Sciences, 2022, 115, 76-87.	6.1	27
4	Allâ€Inorganic Perovskite Polymer–Ceramics for Flexible and Refreshable Xâ€Ray Imaging. Advanced Functional Materials, 2022, 32, 2107424.	14.9	69
5	Effect of cation vacancy on lattice and luminescence properties in CsPbBr3 quantum dots. Ceramics International, 2022, 48, 3383-3389.	4.8	9
6	Tradeâ€off Lattice Site Occupancy Engineering Strategy for Nearâ€Infrared Phosphors with Ultrabroad and Tunable Emission. Advanced Optical Materials, 2022, 10, 2101633.	7.3	46
7	Intense single-band red upconversion luminescence of Er3+/Yb3+ codoped BiOCl nanocrystals via a facile solvothermal strategy. Journal of Solid State Chemistry, 2022, 307, 122744.	2.9	5
8	Highly sensitive optical thermometer of Sm ³⁺ , Mn ⁴⁺ activated LaGaO ₃ phosphor for the regulated thermal behavior. Journal of the American Ceramic Society, 2022, 105, 2804-2812.	3.8	20
9	Tailored up-conversion luminescence output of Al-modulated KYbF ₄ : Er ³⁺ nanocrystals for a low-temperature sensor. CrystEngComm, 2022, 24, 1764-1772.	2.6	3
10	Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass. Science China Materials, 2022, 65, 1586-1593.	6.3	17
11	ldentifying and utilizing optical properties in the CaSrNb ₂ O ₇ Pr ³⁺ phosphor at low temperature. Journal of Materials Chemistry C, 2022, 10, 3547-3552.	5.5	9
12	Enhancement of green upconversion luminescence of Yb3+/Tb3+ co-doped BiOBr nanosheets and its potential applications in photocatalysis. Journal of Solid State Chemistry, 2022, 308, 122897.	2.9	9
13	A Temporal and Space Anti-counterfeiting Based on the Four-Modal Luminescent Ba ₂ Zr ₂ Si ₃ O ₁₂ Phosphors. Inorganic Chemistry, 2022, 61, 3223-3229.	4.0	14
14	Indirect and time-lapse X-ray detection with Ba ₂ LuNbO ₆ :Bi ³⁺ double perovskite phosphors. Journal of Materials Chemistry C, 2022, 10, 6481-6487.	5.5	6
15	Anti-counterfeiting applications by photochromism induced modulation of reversible upconversion luminescence in TiO ₂ :Yb ³⁺ ,Er ³⁺ ceramic. Journal of Materials Chemistry C, 2022, 10, 6243-6251.	5.5	26
16	Waterâ€induced CsBr crystalline transition to CsPbBr ₃ and the change of luminescence properties in borophosphate glass. Journal of the American Ceramic Society, 2022, 105, 4699-4708.	3.8	8
17	Seedâ€Assisted Growth of Methylammoniumâ€Free Perovskite for Efficient Inverted Perovskite Solar Cells. Small Methods, 2022, 6, e2200048.	8.6	9
18	Highâ€Resolution Xâ€Ray Timeâ€Lapse Imaging from Fluoride Nanocrystals Embedded in Glass Matrix. Advanced Optical Materials, 2022, 10, .	7.3	21

#	Article	lF	CITATIONS
19	Order-disorder structural transition in Pr3+-doped Ba3Ga2O6 for rewritable and write-once-read-many optical data storage. Ceramics International, 2022, , .	4.8	2
20	Preparation and photoluminescence of Cs4PbBr6 perovskite quantum dot embedded in borophosphate glass. Journal of Alloys and Compounds, 2022, 911, 165004.	5.5	7
21	The Transformation from Translucent into Transparent Rare Earth Ions Doped Oxyfluoride Glass eramics with Enhanced Luminescence. Advanced Optical Materials, 2022, 10, .	7.3	15
22	Entirely Reversible Photochromic Glass with High Coloration and Luminescence Contrast for 3D Optical Storage. ACS Energy Letters, 2022, 7, 2060-2069.	17.4	44
23	Lead-Free Double Perovskite Cs ₂ NaErCl ₆ : Li ⁺ as High-Stability Anodes for Li-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 4981-4987.	4.6	6
24	The effect of melt-homogenization and heat-treatment on the optical properties of the rare earth doped oxyfluoride glass-ceramics. Journal of Non-Crystalline Solids, 2022, 593, 121773.	3.1	3
25	A NIR to NIR rechargeable long persistent luminescence phosphor Ca2Ga2GeO7:Yb3+,Tb3+. Journal of Rare Earths, 2021, 39, 1520-1526.	4.8	14
26	Transparent perovskite glass-ceramics for visual optical thermometry. Journal of Rare Earths, 2021, 39, 712-717.	4.8	29
27	980Ânm-excited multiphoton photocarrier separation process of Yb3+ ions under internal electric field and its upconverting modification on Eu3+ ions. Journal of Luminescence, 2021, 229, 117710.	3.1	2
28	The dual-defect passivation role of lithium bromide doping in reducing the nonradiative loss in CsPbX ₃ (X = Br and I) quantum dots. Inorganic Chemistry Frontiers, 2021, 8, 658-668.	6.0	15
29	Intermediate excited state suppression and upconversion enhancement of Er3+ ions by carbon-doping boosting photocarrier separation in bismuth oxychloride nanosheets. Journal of Colloid and Interface Science, 2021, 588, 838-846.	9.4	7
30	An unusal strategy of Ca2+ heterovalent doping enabled upconversion enhancement of Er3+ in bismuth oxychloride layered semiconducting crystals. Journal of Alloys and Compounds, 2021, 854, 157252.	5.5	20
31	Influences of copper–potassium ion exchange process on the optical bandgaps and spectroscopic properties of Cr ³⁺ /Yb ³⁺ co-doped in lanthanum aluminosilicate glasses. RSC Advances, 2021, 11, 8917-8926.	3.6	3
32	A reversible and fast-responsive humidity sensor based on a lead-free Cs ₂ TeCl ₆ double perovskite. Materials Advances, 2021, 2, 1043-1049.	5.4	23
33	Highly stable humidity sensor based on lead-free Cs ₃ Bi ₂ Br ₉ perovskite for breath monitoring. Journal of Materials Chemistry C, 2021, 9, 11299-11305.	5.5	26
34	Enhanced upconversion luminescence of BiOCl:Yb ³⁺ ,Er ³⁺ nanosheets <i>via</i> carbon dot modification and their optical temperature sensing. Materials Chemistry Frontiers, 2021, 5, 4280-4290.	5.9	20
35	Optical bandgaps and visible/near-infrared emissions of Bin+-doped (n = 1, 2, and 3) fluoroaluminosilicate glasses via Ag+-K+ ions exchange process. Optical Materials, 2021, 112, 110762.	3.6	5
36	All-Inorganic Lead Free Double Perovskite Li-Battery Anode Material Hosting High Li ⁺ Ion Concentrations. Journal of Physical Chemistry Letters, 2021, 12, 4125-4129.	4.6	14

#	Article	IF	CITATIONS
37	Multi-photon near-infrared emission of Er3+ ions induced by upconversion self-sensitization of layered polarized Bi9V2O18Cl semiconductor with narrow-band. Journal of Luminescence, 2021, 232, 117819.	3.1	2
38	A dynamic three-path authenticating model for anti-counterfeiting in a single host of CaAl2Si2O8. Chemical Engineering Journal, 2021, 412, 128695.	12.7	35
39	Er ³⁺ â€Yb ³⁺ ions doped fluoroâ€aluminosilicate glassâ€ceramics as a temperatureâ€sensing material. Journal of the American Ceramic Society, 2021, 104, 4471-4478.	3.8	13
40	A Highly Stable Photodetector Based on a Lead-Free Double Perovskite Operating at Different Temperatures. Journal of Physical Chemistry Letters, 2021, 12, 5682-5688.	4.6	20
41	Highly Resolved and Robust Dynamic Xâ€Ray Imaging Using Perovskite Glassâ€Ceramic Scintillator with Reduced Light Scattering. Advanced Science, 2021, 8, e2003728.	11.2	128
42	Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium. Light: Science and Applications, 2021, 10, 140.	16.6	95
43	Broadband, Enhanced, and Antithermally Quenched Near-Infrared Phosphors via a Cosubstitution Approach. Inorganic Chemistry, 2021, 60, 11616-11625.	4.0	21
44	Reproducible Xâ€ray Imaging with a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure. Advanced Materials, 2021, 33, e2102529.	21.0	140
45	Tailored Luminescence Output of Bi ³⁺ -Doped BaGa ₂ O ₄ Phosphors with the Assistance of the Introduction of Sr ²⁺ Ions as Secondary Cations. Inorganic Chemistry, 2021, 60, 14467-14474.	4.0	14
46	Thermal engineering of electron-trapping materials for "Smart-Write-In―optical data storage. Chemical Engineering Journal, 2021, 420, 129788.	12.7	8
47	A novel upconversion luminescence temperature sensing material: Negative thermal expansion Y2Mo3O12:Yb3+, Er3+ and positive thermal expansion Y2Ti2O7:Yb3+, Er3+ mixed phosphor. Journal of Alloys and Compounds, 2021, 880, 160156.	5.5	25
48	Internal electric field and oxygen vacancies synergistically enhancing luminescence properties of Eu3+-doped bismuth oxychloride microcrystals. Journal of Luminescence, 2021, 240, 118454.	3.1	2
49	Highly Efficient and Tunable Emission of Leadâ€Free Manganese Halides toward White Lightâ€Emitting Diode and Xâ€Ray Scintillation Applications. Advanced Functional Materials, 2021, 31, 2009973.	14.9	160
50	Enhancing the near-infrared photocatalytic activity and upconversion luminescence of BiOCl:Yb ³⁺ –Er ³⁺ nanosheets with polypyrrole <i>in situ</i> modification. Journal of Materials Chemistry C, 2021, 9, 15251-15262.	5.5	14
51	Transparent Medium Embedded with CdS Quantum Dots for Xâ€Ray Imaging. Advanced Optical Materials, 2021, 9, 2101607.	7.3	20
52	Variation from Zero to Negative Thermal Quenching of Phosphor with Assistance of Defect States. Inorganic Chemistry, 2021, 60, 19365-19372.	4.0	20
53	Selective preparation of Ag species on photoluminescence of Sm 3+ in borosilicate glass via Ag + â€Na + ion exchange. Journal of the American Ceramic Society, 2020, 103, 955-964.	3.8	13
54	Laser induced thermochromism and reversible upconversion emission modulation of a novel WO3:Yb3+,Er3+ ceramic: dual-modal fingerprint acquisition application. Chemical Engineering Journal, 2020, 383, 123180.	12.7	48

#	Article	IF	CITATIONS
55	Warm white light emitting from single composition SrGa 12 O 19 :Dy 3+ phosphors for AC‣ED. Journal of the American Ceramic Society, 2020, 103, 335-345.	3.8	21
56	Near infrared lightâ€induced photocurrent in NaYF ₄ :Yb ³⁺ , Er ³⁺ /WO _{2.72} composite film. Journal of the American Ceramic Society, 2020, 103, 1677-1684.	3.8	5
57	Optical thermometry properties of silicate glass ceramics with dual-phase for spatial isolation of Er3+ and Cr3+. Journal of Luminescence, 2020, 219, 116861.	3.1	34
58	Multipleâ€response antiâ€counterfeiting realized in CaYAl 3 O 7 host with the dual coexistence of Eu 2+ /Eu 3 +. Journal of the American Ceramic Society, 2020, 103, 2235-2243.	3.8	13
59	Silver nanoparticles enhanced luminescence and stability of CsPbBr ₃ perovskite quantum dots in borosilicate glass. Journal of the American Ceramic Society, 2020, 103, 2463-2470.	3.8	37
60	Intense single-band red upconversion emission in BiOCI:Er3+ layered semiconductor via co-doping Ho3+. Journal of Rare Earths, 2020, 38, 577-583.	4.8	10
61	Temperature sensing behavior of Tm3+: 1G4(a), 1G4(b) in oxyfluoride glass ceramics containing BaYb Y(1-)F5 nanocrystals. Journal of Rare Earths, 2020, 38, 356-361.	4.8	3
62	Atomic‣evel Passivation of Individual Upconversion Nanocrystal for Single Particle Microscopic Imaging. Advanced Functional Materials, 2020, 30, 1906137.	14.9	28
63	High-Stable X-ray Imaging from All-Inorganic Perovskite Nanocrystals under a High Dose Radiation. Journal of Physical Chemistry Letters, 2020, 11, 9203-9209.	4.6	43
64	Influence of Cr 3+ on yellowishâ€green UC emission and energy transfer of Er 3+ /Cr 3+ /Yb 3+ triâ€doped zinc silicate glasses. Journal of the American Ceramic Society, 2020, 103, 6356-6368.	3.8	10
65	<i>In situ</i> synthesis of high-efficiency CsPbBr ₃ /CsPb ₂ Br ₅ composite nanocrystals in aqueous solution of microemulsion. Green Chemistry, 2020, 22, 5257-5261.	9.0	16
66	Fingerprint Acquisition Based on Photoâ€Thermal Coloration of MoO 3 Ceramic upon the Irradiation of Multiband Light outside the Bandgap. Advanced Materials Technologies, 2020, 5, 2000562.	5.8	6
67	Multimode Highly Tunable Photoluminescence of Eu3+ Ions Induced by Surface Photovoltage of Bi9V2O18Cl Perovskite Oxychloride Nanosheets and Application for Advanced Anticounterfeiting Agents. Journal of Physical Chemistry C, 2020, 124, 27811-27819.	3.1	4
68	Fingerprint Acquisition: Fingerprint Acquisition Based on Photoâ€Thermal Coloration of MoO ₃ Ceramic upon the Irradiation of Multiband Light outside the Bandgap (Adv. Mater.) Tj ETQq0	0 & sgBT	Overlock 10
69	Broadband near-infrared emitting from Li1.6Zn1.6Sn2.8O8:Cr3+ phosphor by two-site occupation and Al3+ cationic regulation. Materials and Design, 2020, 192, 108701.	7.0	44
70	Atomic-Scale Insights into the Dynamics of Growth and Degradation of All-Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 4618-4624.	4.6	20
71	Ca ²⁺ /Sr ²⁺ /Ba ²⁺ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 5796-5807.	3.8	14
72	An orangeâ€emitting phosphor BaSrGa ₄ O ₈ :Bi ³⁺ ,K ⁺ with unique oneâ€dimensional chain structure for high index color WLEDs. Journal of the American Ceramic Society, 2020, 103, 6075-6080.	3.8	12

#	Article	IF	CITATIONS
73	Modification photon avalanche emission of BiOCI: Er3+ nanosheets through facile solvent-thermal synthesis. Inorganic Chemistry Communication, 2020, 117, 107934.	3.9	6
74	Long Persistent Luminescence from Allâ€Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 2020, 8, 2000585.	7.3	37
75	The synthesis of a perovskite CsPbBr ₃ quantum dot superlattice in borosilicate glass. Chemical Communications, 2020, 56, 4460-4463.	4.1	30
76	Achieving high thermal stability of different rare-earth ions in a single matrix host <i>via</i> the manipulation of the local structure by a solid solution. Physical Chemistry Chemical Physics, 2020, 22, 16294-16300.	2.8	10
77	A new strategy of interlayer doping of Li ions for the photoluminescence enhancement of Eu ³⁺ -doped bismuth oxychloride layered semiconductors. Inorganic Chemistry Frontiers, 2020, 7, 3106-3114.	6.0	8
78	<i>In Situ</i> Observation of Nucleation and Crystallization of a Single Nanoparticle in Transparent Media. Journal of Physical Chemistry C, 2020, 124, 15533-15540.	3.1	9
79	Novel organic–inorganic hybrid powder SrGa ₁₂ O ₁₉ :Mn ²⁺ –ethyl cellulose for efficient latent fingerprint recognition <i>via</i> time-gated fluorescence. RSC Advances, 2020, 10, 8233-8243.	3.6	18
80	Ultrahigh photo-stable all-inorganic perovskite nanocrystals and their robust random lasing. Nanoscale Advances, 2020, 2, 888-895.	4.6	6
81	Unusual photoluminescence regulation of single-crystalline BiOCl:Eu3+ nanosheet by C-heterovalent doping: The evidence of photoferroelectric effect on the transitions of the RE3+ optical activator. Ceramics International, 2020, 46, 8299-8307.	4.8	10
82	Energy transfer and spectroscopic properties of Cr3+/Yb3+ co-doped TeO2–ZnO–La2O3 tellurite glasses under different wavelength excitation lights. Optical Materials, 2020, 100, 109662.	3.6	11
83	Reversible multiplexing for optical information recording, erasing, and reading-out in photochromic BaMgSiO4:Bi3+ luminescence ceramics. Science China Materials, 2020, 63, 582-592.	6.3	57
84	NIR-NIR upconverting optical temperature sensing based on the thermally coupled levels of Yb3+-Tm3+ codoped Bi7F11O5 nanosheets. Journal of Luminescence, 2020, 221, 117034.	3.1	18
85	Electrochromism induced reversible upconversion luminescence modulation of WO3:Yb3+, Er3+ inverse opals for optical storage application. Chemical Engineering Journal, 2020, 394, 124967.	12.7	30
86	Disentangling site occupancy, cation regulation, and oxidation state regulation of the broadband near infrared emission in a chromium-doped SrGa ₄ O ₇ phosphor. Inorganic Chemistry Frontiers, 2020, 7, 2313-2321.	6.0	41
87	Perovskite quantum dots growth in situ in transparent medium for short wavelength shielding. Journal of the American Ceramic Society, 2020, 103, 4150-4158.	3.8	10
88	808Ânm-excited multiband NIR emission with looping mechanism and intrinsic bistability in Er3+ singly-doped BiOCl layered semiconductor. Optical Materials, 2020, 102, 109806.	3.6	2
89	Novel Strategy for Designing Photochromic Ceramic: Reversible Upconversion Luminescence Modification and Optical Information Storage Application in the PbWO ₄ :Yb ³⁺ , Er ³⁺ Photochromic Ceramic. ACS Applied Materials & Interfaces, 2020, 12, 21936-21943.	8.0	63
90	Broadband nearâ€infrared emission enhancement in K ₂ Ga ₂ Sn ₆ O ₁₆ :Cr ³⁺ phosphor by electronâ€lattice coupling regulation. Journal of the American Ceramic Society, 2020, 103, 5067-5075.	3.8	54

#	Article	IF	CITATIONS
91	Highly Sensitive Detection of Amaranth Realized with Upconversion Nanoparticles-Based Solid Sensor. Journal of the Electrochemical Society, 2020, 167, 127511.	2.9	5
92	Ultraviolet C lasing at 263  nm from Ba ₂ LaF ₇ :Yb ³⁺ ,Tm ^{3+< upconversion nanocrystal microcavities. Optics Letters, 2020, 45, 5986.}	/sug>	9
93	Study of Crystallization and Coalescence of Nanocrystals in Amorphous Glass at High Temperature. Inorganic Chemistry, 2019, 58, 9500-9504.	4.0	8
94	Structural Origins of BaF 2 /Ba 1 â~' x R x F 2 + x /RF 3 Nanocrystals Formation from Phase Separated Fluoroaluminosilicate Glass: A Molecular Dynamic Simulation Study. Advanced Theory and Simulations, 2019, 2, 1900062.	2.8	5
95	Effect of melting temperature on the structure of self-crystallized Ba2LaF7 glass-ceramics. Journal of Non-Crystalline Solids, 2019, 523, 119579.	3.1	9
96	BiOCl:Er3+ Nanosheets with Tunable Thickness for Photon Avalanche Phosphors. ACS Applied Nano Materials, 2019, 2, 7652-7660.	5.0	16
97	High-performance and moisture-resistant red-emitting Cs ₂ SiF ₆ :Mn ⁴⁺ for high-brightness LED backlighting. Journal of Materials Chemistry C, 2019, 7, 2401-2407.	5.5	74
98	Intense one-band near-infrared upconversion luminescence induced by using spontaneous polarization BiOCl sheet crystals as hosts for Yb ³⁺ and Tm ³⁺ ions. Inorganic Chemistry Frontiers, 2019, 6, 612-620.	6.0	15
99	Recent developments and progress of inorganic photo-stimulated phosphors. Journal of Rare Earths, 2019, 37, 679-690.	4.8	37
100	Crystal structure insight aided design of SrGa2Si2O8:Mn2+ with multi-band and thermally stable emission for high-power LED applications. Chemical Engineering Journal, 2019, 375, 122016.	12.7	32
101	Phase-Selective Distribution of Eu ²⁺ and Eu ³⁺ in Oxide and Fluoride Crystals in Glass-Ceramics for Warm White-Light-Emitting Diodes. ACS Applied Electronic Materials, 2019, 1, 961-971.	4.3	61
102	Red photo-stimulated luminescence from deep traps of BaZrGe3O9: Pr3+ for optical imaging application. Journal of Alloys and Compounds, 2019, 800, 224-230.	5.5	12
103	Reversible Modulated Upconversion Luminescence of MoO ₃ :Yb ³⁺ ,Er ³⁺ Thermochromic Phosphor for Switching Devices. Inorganic Chemistry, 2019, 58, 6950-6958.	4.0	29
104	Detection of Cell Viability via Fluorescence Labeling of Silicate Phosphor with a Low-Temperature Superlong Persistent Luminescence. ACS Applied Bio Materials, 2019, 2, 2610-2616.	4.6	4
105	Reversible Upconversion Luminescence Modification Based on Photochromism in BaMgSiO ₄ :Yb ³⁺ ,Tb ³⁺ Ceramics for Antiâ€Counterfeiting Applications. Advanced Optical Materials, 2019, 7, 1900213.	7.3	122
106	Simultaneous phase and morphology control of Ba2YbF7: Er3+ upconversion nanocrystals through La3+ doping. Materials Research Bulletin, 2019, 115, 242-246.	5.2	5
107	NIR-excited all-inorganic perovskite quantum dots (CsPbBr ₃) for a white light-emitting device. Journal of Materials Chemistry C, 2019, 7, 3751-3755.	5.5	34
108	High Water Resistance of Monoclinic CsPbBr ₃ Nanocrystals Derived from Zero-Dimensional Cesium Lead Halide Perovskites. ACS Omega, 2019, 4, 6084-6091.	3.5	35

#	Article	IF	CITATIONS
109	Noâ€Interference Reading for Optical Information Storage and Ultraâ€Multiple Antiâ€Counterfeiting Applications by Designing Targeted Recombination in Charge Carrier Trapping Phosphors. Advanced Optical Materials, 2019, 7, 1900006.	7.3	87
110	Improving upconversion emission of NaYF4:Yb3+, Er3+ nanoparticles by coupling Au nanoparticles and photonic crystals: The detection enhancement of Rhodamine B. Journal of Alloys and Compounds, 2019, 788, 1265-1273.	5.5	16
111	Abnormally heat-enhanced Yb excited state lifetimes in Bi7F11O5 nanocrystals and the potential applications in lifetime luminescence nanothermometry. Journal of Materials Chemistry C, 2019, 7, 13811-13817.	5.5	16
112	Influence of glass composition on photoluminescence from Ge ²⁺ or Ag nanoâ€cluster in germanate glasses for white lightâ€emitting diodes. Journal of the American Ceramic Society, 2019, 102, 1169-1179.	3.8	9
113	Upconversion luminescence modification induced near infrared luminescence enhancement of Bi2Ti2O7:Yb3+, Er3+ inverse opals. Journal of Luminescence, 2019, 208, 150-154.	3.1	20
114	Low-temperature red long-persistent luminescence of Pr3+ doped NaNbO3 with a perovskite structure. Journal of Luminescence, 2019, 208, 290-295.	3.1	33
115	Ultra-high sensitivity of rhodamine B sensing based on NaGdF4:Yb3+,Er3+@NaGdF4 core-shell upconversion nanoparticles. Journal of Rare Earths, 2019, 37, 339-344.	4.8	8
116	Preparation and photoluminescence enhancement of Au nanoparticles with ultraâ€broad plasmonic absorption in glasses. Journal of the American Ceramic Society, 2019, 102, 4200-4212.	3.8	10
117	Insights into anti-thermal quenching of photoluminescence from SrCaGa4O8 based on defect state and application in temperature sensing. Journal of Luminescence, 2019, 208, 284-289.	3.1	21
118	UV-shielding device of high-stability glass embedded with in-situ growth of ZnO quantum dots. Journal of Alloys and Compounds, 2019, 784, 535-540.	5.5	20
119	Luminescence quenching properties of Sr2Ga2GeO7: Pr3+ with and without traps participation. Journal of Solid State Chemistry, 2019, 271, 23-28.	2.9	8
120	Two distinct simultaneous NIR looping behaviours of Er3+ singly doped BiOBr: The underlying nature of the Er3+ ion photon avalanche emission induced by a layered structure. Journal of Alloys and Compounds, 2019, 779, 440-449.	5.5	20
121	Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps. Journal of Materials Chemistry C, 2018, 6, 2978-2982.	5.5	96
122	Enhanced luminescence performance of CaO:Ce ³⁺ ,Li ⁺ ,F ^{â^'} phosphor and its phosphor-in-glass based high-power warm LED properties. Journal of Materials Chemistry C, 2018, 6, 4077-4086.	5.5	24
123	Effects of the deep traps on the thermalâ€stability property of CaAl ₂ O ₄ : Eu ²⁺ phosphor. Journal of the American Ceramic Society, 2018, 101, 3480-3488.	3.8	36
124	Direct Identification of Surface Defects and Their Influence on the Optical Characteristics of Upconversion Nanoparticles. ACS Nano, 2018, 12, 3623-3628.	14.6	86
125	Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO ₃ :Yb ³⁺ ,Er ³⁺ Phosphor. ACS Applied Materials & amp; Interfaces, 2018, 10, 14941-14947.	8.0	72
126	Preparation, Growth Mechanism, Upconversion, and Near-Infrared Photoluminescence Properties of Convex-Lens-like NaYF ₄ Microcrystals Doped with Various Rare Earth Ions Excited at 808 nm. Crystal Growth and Design, 2018, 18, 1758-1767.	3.0	20

#	Article	IF	CITATIONS
127	Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs. Journal of Materials Chemistry C, 2018, 6, 1738-1745.	5.5	95
128	Emergence of photoluminescence enhancement of Eu ³⁺ doped BiOCl single-crystalline nanosheets at reduced vertical dimensions. Nanoscale, 2018, 10, 4865-4871.	5.6	42
129	Thermally stable photoluminescence and long persistent luminescence of Ca 3 Ga 4 O 9 :Tb 3+ /Zn 2+. Journal of Rare Earths, 2018, 36, 675-679.	4.8	27
130	Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: Energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions. Chemical Engineering Journal, 2018, 341, 175-186.	12.7	34
131	Preparation and photoluminescence enhancement of Au nanoparticles embedded La <scp>PO</scp> ₄ :Eu ³⁺ inverse opals. Journal of the American Ceramic Society, 2018, 101, 2689-2694.	3.8	10
132	Role of oxygen vacancies in long persistent phosphor Ca ₂ Ga ₂ GeO ₇ : Zn ²⁺ . Journal of the American Ceramic Society, 2018, 101, 2695-2700.	3.8	21
133	Rb ⁺ cations enable the change of luminescence properties in perovskite (Rb _x Cs _{1â^`x} PbBr ₃) quantum dots. Nanoscale, 2018, 10, 3429-3437.	5.6	55
134	Luminescence enhancement and white light generation of Eu3+ and Dy3+ single-doped and co-doped tellurite glasses by Ag nanoparticles based on Ag+-Na+ ion-exchange. Journal of Alloys and Compounds, 2018, 748, 717-729.	5.5	34
135	Effects of crystal structure transformation on cooperative up-conversion luminescence in the Tb3+-Yb3+ co-doped oxyfluoride glass-ceramics. Journal of Alloys and Compounds, 2018, 731, 1044-1052.	5.5	14
136	Enhanced photoluminescence property and mechanism of Eu ³⁺ â€doped tellurite glasses by the silver and gold nanoparticles. Journal of the American Ceramic Society, 2018, 101, 612-623.	3.8	25
137	Multiple anti-counterfeiting realized in NaBaScSi ₂ O ₇ with a single activator of Eu ²⁺ . Journal of Materials Chemistry C, 2018, 6, 11137-11143.	5.5	46
138	Modified surface states of NaGdF ₄ :Yb ³⁺ /Tm ³⁺ up-conversion nanoparticles <i>via</i> a post-chemical annealing process. Nanoscale, 2018, 10, 19031-19038.	5.6	16
139	Upconversion luminescence enhancement of NaYF 4 :Yb 3+ ,Er 3+ nanocrystals induced by the surface plasmon resonance of nonstoichiometric WO 2.72 semiconductor. Journal of the American Ceramic Society, 2018, 101, 4463-4467.	3.8	9
140	Influence of upconversion luminescence modification on near infrared luminescence and cooperative energy transfer in the YbPO4:Er3+, Nb3+/Er3+inverse opals excited at 980 or 808â€īnm. Journal of Alloys and Compounds, 2018, 767, 16-22.	5.5	9
141	Abnormal photo-stimulated luminescence in Ba2Ga2GeO7: Tb3+, Bi3+. Journal of Luminescence, 2018, 202, 414-419.	3.1	37
142	Effect of heat treatment mechanism on upconversion luminescence in Er 3+ /Yb 3+ co-doped NaYF 4 oxyfluoride glass-ceramics. Journal of Alloys and Compounds, 2017, 699, 303-307.	5.5	28
143	Modification on upconversion luminescence of Er 3+ -Yb 3+ co-doped BiOCl semiconductor nanosheets through interaction between nanohost and doping lanthanide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 177, 111-117.	3.9	10
144	High-temperature long persistent and photo-stimulated luminescence in Tb3+ doped gallate phosphor. Journal of Alloys and Compounds, 2017, 701, 774-779.	5.5	33

#	Article	IF	CITATIONS
145	Tunable and White Light Emission of a Single-Phased Ba ₂ Y(BO ₃) ₂ Cl:Bi ³⁺ ,Eu ³⁺ Phosphor by Energy Transfer for Ultraviolet Converted White LEDs. Journal of Physical Chemistry C, 2017, 121, 5267-5276.	3.1	137
146	Long persistent properties of CaGa ₂ O ₄ :Bi ³⁺ at different ambient temperature. Journal of the American Ceramic Society, 2017, 100, 3514-3521.	3.8	63
147	Investigation of optical properties: Eu with Al codoping in aluminum silicate glasses and glassâ€ceramics. Journal of the American Ceramic Society, 2017, 100, 2901-2913.	3.8	43
148	Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal. Journal of Alloys and Compounds, 2017, 728, 1037-1042.	5.5	112
149	Preparation and upconversion luminescence modification ofÂYbPO 4 :Er 3+ inverse opal heterostructure. Journal of Rare Earths, 2017, 35, 1180-1185.	4.8	8
150	Splitting upconversion emission and phononâ€essisted population inversion of Ba ₂ Y(BO ₃) ₂ Cl:Yb ³⁺ , Er ³⁺ phosphor. Journal of the American Ceramic Society, 2017, 100, 4994-4998.	3.8	24
151	Adjustable multicolor up-energy conversion in light-luminesce in Tb3+/Tm3+/Yb3+ co-doped oxyfluorifFde glass-ceramics containing Ba2LaF7 nanocrystals. Scientific Reports, 2017, 7, 6518.	3.3	11
152	Upconversion emission enhancement mechanisms of Nd ³⁺ -sensitized NaYF ₄ :Yb ³⁺ ,Er ³⁺ nanoparticles using tunable plasmonic Au films: plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement. Journal of Materials Chemistry C, 2017, 5, 8535-8544.	5.5	47
153	Comprehensive investigations of near infrared downshift and upconversion luminescence mechanisms in Yb ³⁺ single-doped and Er ³⁺ ,Yb ³⁺ co-doped SiO ₂ inverse opals. Physical Chemistry Chemical Physics, 2017, 19, 31997-32006.	2.8	19
154	Au nanoparticles embedded inverse opal photonic crystals as substrates for upconversion emission enhancement. Journal of the American Ceramic Society, 2017, 100, 988-997.	3.8	13
155	Up-conversion luminescence of Er 3+ ions in transparent oxyfluoride glass ceramics containing Na(Gd) Tj ETQq1 🕻	1 0.78431 5.2	4 ṟǥƁT /Ove
156	Effect of crystalline fraction on upconversion luminescence in Er 3+ /Yb 3+ Co-doped NaYF 4 oxyfluoride glass-ceramics. Journal of the European Ceramic Society, 2017, 37, 763-770.	5.7	41
157	Photoluminescence properties of tellurite glasses doped Dy3+ and Eu3+ for the UV and blue converted WLEDs. Journal of Non-Crystalline Solids, 2017, 457, 1-8.	3.1	82
158	Photoluminescence Enhancement of SiO ₂ â€Coated LaPO ₄ :Eu ³⁺ Inverse Opals by Surface Plasmon Resonance of Ag Nanoparticles. Journal of the American Ceramic Society, 2016, 99, 3330-3335.	3.8	12
159	<scp>NIR</scp> Enhancement Based on Energy Transfer Process of <scp>Ce</scp> ³⁺ – <scp>Yb</scp> ³⁺ in Inverse Opal Photonic Crystals. Journal of the American Ceramic Society, 2016, 99, 911-916.	3.8	9
160	Effect of Defect States on the Upconversion Emission Properties in KLu ₂ F ₇ Nanocrystalline. ECS Journal of Solid State Science and Technology, 2016, 5, R137-R141.	1.8	1
161	Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics. Journal of Rare Earths, 2016, 34, 341-367.	4.8	64
162	Phase transformation and enhancement of luminescence in the Tb3+-Yb3+ co-doped oxyfluoride glass ceramics containing NaYF4 nanocrystals. Journal of the European Ceramic Society, 2016, 36, 2825-2830.	5.7	35

#	Article	IF	CITATIONS
163	Effects of Li + ions on the enhancement of up-conversion emission in Ho 3+ -Yb 3+ co-doped transparent glass–ceramics containing Ba 2 LaF 7 nanocrystals. Optical Materials, 2016, 60, 277-282.	3.6	19
164	Phononâ€Assisted Population Inversion in Lanthanideâ€Doped Upconversion Ba ₂ LaF ₇ Nanocrystals in Glassâ€Ceramics. Advanced Materials, 2016, 28, 8045-8050.	21.0	104
165	Improved optical storage properties of NaAlSiO4: Tb3+ induced by Bi3+. Optical Materials, 2016, 57, 140-145.	3.6	11
166	Unusually enhancing high-order photon avalanche upconversion of layered BiOCl:Er3+ semiconductor poly-crystals via Li+ ion intercalation doping. Materials and Design, 2016, 105, 290-295.	7.0	21
167	Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF ₄ :Yb ³⁺ , Er ³⁺ nanoparticles deposited on Au films with papilla Au nanoparticles. RSC Advances, 2016, 6, 56963-56970.	3.6	7
168	Effect of Defect Distribution on the Optical Storage Properties of Strontium Gallates with a Low-Dimensional Chain Structure. Inorganic Chemistry, 2016, 55, 894-901.	4.0	47
169	Effect of Li+ ions on the enhancement upconversion and stokes emission of NaYF4:Tb, Yb co-doped in glass-ceramics. Journal of Alloys and Compounds, 2016, 667, 297-301.	5.5	34
170	Controllable synergistic effect of Yb3+, Er3+co-doped KLu2F7with the assistant of defect state. CrystEngComm, 2016, 18, 2642-2649.	2.6	5
171	Enhancement of Tb–Yb quantum cutting emission by inverse opal photonic crystals. Optical Materials, 2016, 54, 229-233.	3.6	15
172	The synthesis and photoluminescence of a single-phased white-emitting NaAlSiO 4 : Ce 3+ , Mn 2+ phosphor for WLEDs. Materials Research Bulletin, 2016, 73, 1-5.	5.2	37
173	Color Variation Between <scp>PSL</scp> and <scp>PL</scp> in CaAl ₂ Si ₂ O ₈ :Tb ³⁺ with the Assistance of Trap Level. Journal of the American Ceramic Society, 2015, 98, 2008-2010.	3.8	4
174	Preparation and Enhanced Luminescence of Au Nanoparticles Including SiO ₂ :Tb ³⁺ Threeâ€Dimensional Ordered Macroporous Films. Journal of the American Ceramic Society, 2015, 98, 2011-2013.	3.8	4
175	Effect of the Glass Structure on Emission of Rareâ€Earthâ€Doped Borate Glasses. Journal of the American Ceramic Society, 2015, 98, 4102-4106.	3.8	22
176	Tunable LLP via Energy Transfer between Na _{2–<i>y</i>} (Zn _{1–<i>x</i>} Ga _{<i>x</i>})GeO ₄ Sosoloid Host and Emission Centers with the Assistance of Zn Vacancies. Journal of Physical Chemistry C, 2015, 119, 14047-14055.	3.1	49
177	Color-tunable luminescence in Eu3+/Tb3+ co-doped oxyfluoride glass and transparent glass–ceramics. Journal of Alloys and Compounds, 2015, 629, 310-314.	5.5	69
178	Sunlight Activated Long-Lasting Luminescence from Ba ₅ Si ₈ O ₂₁ : Eu ²⁺ ,Dy ³⁺ Phosphor. Inorganic Chemistry, 2015, 54, 1690-1697.	4.0	118
179	Preparation and Upconversion Emission Modification of Crystalline Colloidal Arrays and Rare Earth Fluoride Microcrystal Composites. Scientific Reports, 2015, 5, 7636.	3.3	21
180	Design, synthesis and characterization of a novel orange-yellow long-lasting phosphor: Li2SrSiO4:Eu2+, Dy3+. Powder Technology, 2015, 276, 129-133.	4.2	24

#	Article	IF	CITATIONS
181	Photoluminescence enhancement of Eu ³⁺ ions by Ag species in SiO ₂ three-dimensionally ordered macroporous materials. Journal of Materials Chemistry C, 2015, 3, 7699-7708.	5.5	31
182	Up-conversion luminescence properties of lanthanide-doped LuF3 with different morphologies synthesized via a facile ionothermal process. CrystEngComm, 2015, 17, 2147-2152.	2.6	8
183	Color tunable upconversion emission in CeO2:Yb,Er three-dimensional ordered macroporous materials. Journal of Rare Earths, 2015, 33, 599-603.	4.8	17
184	Multi-band photon avalanche controlling performance of BiOCl:Er ³⁺ crystals through facile Yb ³⁺ doping. Journal of Materials Chemistry C, 2015, 3, 8559-8565.	5.5	21
185	Investigation on the upconversion emission in 2D BiOBr:Yb3+/Ho3+ nanosheets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 135-141.	3.9	20
186	Farâ€Redâ€Emitting BiOCl:Eu ³⁺ Phosphor with Excellent Broadband <scp>NUV</scp> â€Excitation for Whiteâ€Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2015, 98, 2170-2176.	3.8	42
187	Effects of copper ions on the near-infrared luminescence in Bi doped silicate glass via copper for sodium ion exchange. Journal of Non-Crystalline Solids, 2015, 421, 30-34.	3.1	3
188	Photostimulated luminescence properties of Eu ²⁺ â€doped barium aluminate phosphor. Luminescence, 2015, 30, 235-239.	2.9	14
189	Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF ₄ : Yb ³⁺ , Er ³⁺ Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 25211-25218.	8.0	88
190	Effect of glass network modifier R2O (R=Li, Na and K) on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics. Journal of Rare Earths, 2015, 33, 830-836.	4.8	34
191	Ag Nanoparticlesâ€Enhanced Photoluminescence in La <scp>PO</scp> ₄ : Eu Threeâ€Dimensional Ordered Macroporous Films. Journal of the American Ceramic Society, 2015, 98, 1562-1566.	3.8	5
192	Visible and near-infrared upconversion photoluminescence in lanthanide-doped KLu ₃ F ₁₀ nanoparticles. CrystEngComm, 2015, 17, 7332-7338.	2.6	10
193	Investigation on the near-infrared-emitting thermal stability of Bi activated alkaline-earth aluminoborosilicate glasses. Journal of Applied Physics, 2015, 117, 053107.	2.5	7
194	Local structure regulating effect for the near infrared luminescence of Bi in zinic silicate and germanate glasses. Optik, 2015, 126, 3624-3627.	2.9	4
195	Unusual Effect of Cerium Codoping on Stokes and Anti-Stokes Luminescence of BiOCl:Er ³⁺ Crystal. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	0
196	Effective enhancement of Bi near-infrared luminescence in silicogermanate glasses via silver–sodium ion exchange. Journal of Non-Crystalline Solids, 2015, 409, 178-182.	3.1	6
197	Effects of gold nanoparticles on the enhancement of upconversion and near-infrared emission in Er3+/Yb3+ co-doped transparent glass–ceramics containing BaF2 nanocrystals. Ceramics International, 2015, 41, 2648-2653.	4.8	26
198	Photostimulated and Long Persistent Luminescence Properties from Different Crystallographic Sites of βâ€6r ₂ SiO ₄ : Eu ²⁺ , R ³⁺ (RÂ=ÂTm, Gd). Journal of the American Ceramic Society, 2015, 98, 171-177.	3.8	26

#	Article	IF	CITATIONS
199	Color-tunable luminescence of Eu3+ in PbF2 embedded in oxyfluoroborate glass and its nanocrystalline glass. Journal of Alloys and Compounds, 2015, 621, 62-65.	5.5	12
200	Response to "Comment on â€~High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation'―[Appl. Phys. Lett. 104, 236101 (2014)]. Applied Physics Letters, 2014, 104, 236102.	3.3	0
201	Influence of the <scp><scp>Eu</scp>2+ on the Silver Aggregates Formation in <scp><scp>Ag</scp></scp>⁺â€"<scp><scp>Na</scp>+ lonâ€Exchanged <scp><scp>Eu</scp></scp>3+â€Doped Sodiumâ€"Aluminosilicate Glasses. Journal of the American Ceramic Society. 2014. 97. 1110-1114.</scp></scp>	3.8	16
202	Tunable Mission and Trichromatic Whiteâ€Emitting in Oxyfluoride Glasses by Utilization of Cu ⁺ lons as Multiple Energyâ€Transfer Creators. Journal of the American Ceramic Society, 2014, 97, 2897-2902.	3.8	16
203	Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses. Journal of Applied Physics, 2014, 115, .	2.5	10
204	Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses. Materials Research Bulletin, 2014, 51, 315-319.	5.2	30
205	Continuous modification of upconversion luminescence of fluorescent dye in the crystalline colloidal arrays. Colloid and Polymer Science, 2014, 292, 613-617.	2.1	1
206	Energy transfer and upconversion emission of Er3+/Tb3+/Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals under heat treatment. Optical Materials, 2014, 36, 639-644.	3.6	21
207	Investigation on existing states and photoluminescence property of silver in the SiO ₂ three-dimensionally ordered macroporous materials. RSC Advances, 2014, 4, 33607.	3.6	11
208	Upconversion emission properties of CeO ₂ : Tm ³⁺ , Yb ³⁺ inverse opal photonic crystals. Modern Physics Letters B, 2014, 28, 1450218.	1.9	0
209	Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics. Optics and Laser Technology, 2014, 64, 264-268.	4.6	20
210	Abnormal near-infrared luminescence property of bismuth doped calcium germanate glasses. Journal of Non-Crystalline Solids, 2014, 402, 166-171.	3.1	5
211	Upconversion Emission Enhancement of NaYF ₄ :Yb,Er Nanoparticles by Coupling Silver Nanoparticle Plasmons and Photonic Crystal Effects. Journal of Physical Chemistry C, 2014, 118, 17992-17999.	3.1	58
212	Improvement of the energy transfer from Ca3SnSi2O9host to rare-earth ions with the assistance of oxygen vacancies. RSC Advances, 2014, 4, 963-968.	3.6	12
213	Color variation of photo-stimulated luminescence in strontium ortho-silicate with the assistance of trap centers. Materials Letters, 2014, 127, 40-43.	2.6	16
214	Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature. Ceramics International, 2013, 39, 8911-8916.	4.8	40
215	High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation. Applied Physics Letters, 2013, 103, 231104. 	3.3	41
216	Enhancement of the up-conversion luminescence of Yb3+/Er3+ or Yb3+/Tm3+ co-doped NaYF4 nanoparticles by photonic crystals. Journal of Materials Chemistry C, 2013, 1, 6541.	5.5	73

#	Article	IF	CITATIONS
217	Preparation and characterization of Er3+-Yb3+-Ce3+ co-doped transparent glass ceramic containing nano Ca5(PO4)3F crystals. Journal of Rare Earths, 2013, 31, 400-404.	4.8	10
218	Effect of retrapping on the persistent luminescence in strontium silicate orange–yellow phosphor. Journal of Solid State Chemistry, 2013, 206, 66-68.	2.9	18
219	Significantly enhanced superbroadband NIR emission in bismuth-doped calcium aluminophosphsilicate glasses by PbO substitution. Materials Research Bulletin, 2013, 48, 260-263.	5.2	6
220	Preparation and blue–white luminescence properties of Bi3+-doped Ba5SiO4Cl6. Journal of Materials Science, 2013, 48, 8566-8570.	3.7	21
221	Investigation of the role of silver species on spectroscopic features of Sm3+-activated sodium–aluminosilicate glasses via Ag+-Na+ ion exchange. Journal of Applied Physics, 2013, 113, 193103.	2.5	29
222	Significant Improvement of Photo-Stimulated Luminescence of Ba ₄ (Si ₃ O ₈) ₂ :Eu ²⁺ by Co-Doping with Tm ³⁺ . ECS Journal of Solid State Science and Technology, 2013, 2, R225-R229.	1.8	18
223	Upconversion Luminescence and Color Tunability Properties in Tm3+-Ho3+-Yb3+ Co-Doped Oxyfluoride Nano-Glass-Ceramics. , 2012, , .		0
224	Effect of Optical Basicity on Broadband Infrared Fluorescence in Thulium-Doped Germanate Glasses. , 2012, , .		0
225	Synthesis and Near-Infrared Fluorescent Properties of Nd3+-Yb3+ Co-Doped Lanthanum Phosphate. , 2012, , .		1
226	Energy transfer and photoluminescence modification in Yb–Er–Tm triply doped Y2Ti2O7 upconversion inverse opal. Journal of Materials Chemistry, 2012, 22, 18558.	6.7	45
227	The influence of alkali ions size on the superbroadband NIR emission from bismuth-doped alkali aluminoborophosphsilicate glasses. Optical Materials, 2012, 35, 61-64.	3.6	17
228	Blue and Green Upconversion Emission Modification in Tb, Yb Co-Doped Y2Ti2O7 Inverse Opal. , 2012, , .		0
229	Hydrothermal Synthesis Nano FAP : Nd3+ as Biological Probe with Near-Infrared to Near-Infrared Luminescence. , 2012, , .		1
230	Upconversion of Nd3+ in Nd3+-Yb3+ Co-Doped Transparent Glass Ceramics Embededing Nano Ca5(Po4)3F Crystals. , 2012, , .		1
231	Blue and green upconversion luminescence modification of Tb3+–Yb3+ co-doped Ca5(PO4)3F inverse opal. Journal of Sol-Gel Science and Technology, 2012, 62, 149-152.	2.4	6
232	Modification of the upconversion spontaneous emission in photonic crystals. Materials Chemistry and Physics, 2012, 133, 584-587.	4.0	18
233	Infrared broadband emission of bismuth–thulium co-doped lanthanum–aluminum–silica glasses. Journal of Luminescence, 2012, 132, 1353-1356.	3.1	18
234	Effect of photonic bandgap on upconversion emission in YbPO_4:Er inverse opal photonic crystals. Applied Optics, 2011, 50, 287.	2.1	17

#	Article	IF	CITATIONS
235	Observation of Energy Transfer from Host to Rare-Earth Ions in Ca2SnO4:Pr3+ Phosphor. Journal of the American Ceramic Society, 2011, 94, 985-987.	3.8	35
236	Color Tunable Upconversion Emission in Yb, Er Co-Doped Bismuth Titanate Inverse Opal. Journal of the American Ceramic Society, 2011, 94, 2308-2310.	3.8	11
237	Frequency up-conversion luminescence properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 393-397.	1.0	9
238	Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses. Optical Materials, 2009, 31, 945-948.	3.6	56
239	Ultra-sensitive photoluminescence modification of Eu3+ ion based on light-tuning surface potential of Bi3O4Cl layered semiconductor and application for facile UV light detector. Journal of Materials Chemistry C, 0, , .	5.5	4
240	Locking Energy Transfer of Rare Earth Ions via an "Electron Jam―Caused by Vertical Photocarrier Separation of a Layered Semiconductor. Journal of Physical Chemistry C, 0, , .	3.1	1
241	Stable Singleâ€Mode Lasing from a Hybrid Perovskite–Polymer Fiber. Advanced Optical Materials, 0, , 2200439.	7.3	1