Qipeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4165862/publications.pdf

Version: 2024-02-01

		759233		839539
18	1,415	12		18
papers	citations	h-index		g-index
			_	
10	10	10		2222
19	19	19		2292
all docs	docs citations	times ranked		citing authors
19 all docs	19 docs citations	19 times ranked		2292 citing authors

#	Article	IF	Citations
1	Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 2012, 22, 107-126.	12.0	921
2	SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Research, 2021, 31, 247-258.	12.0	73
3	Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration. Nature Communications, 2021, 12, 2030.	12.8	64
4	Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochemical and Biophysical Research Communications, 2018, 497, 619-625.	2.1	60
5	Synaptosomes secrete and uptake functionally active micro <scp>RNA</scp> s via exocytosis and endocytosis pathways. Journal of Neurochemistry, 2013, 124, 15-25.	3.9	57
6	<scp>PTP</scp> 1B markedly promotes breast cancer progression and is regulated by miRâ€193aâ€3p. FEBS Journal, 2019, 286, 1136-1153.	4.7	47
7	BAP1 suppresses lung cancer progression and is inhibited by miR-31. Oncotarget, 2016, 7, 13742-13753.	1.8	35
8	Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32155-32164.	7.1	32
9	Identification and Characterization of the MicroRNA Profile in Aging Rats with Erectile Dysfunction. Journal of Sexual Medicine, 2014, 11, 1646-1656.	0.6	25
10	Differentially expressed microRNAs in the corpus cavernosum from a murine model with type 2 diabetes mellitus-associated erectile dysfunction. Molecular Genetics and Genomics, 2016, 291, 2215-2224.	2.1	17
11	The Transcription Factor C-Myc Suppresses MiR-23b and MiR-27b Transcription during Fetal Distress and Increases the Sensitivity of Neurons to Hypoxia-Induced Apoptosis. PLoS ONE, 2015, 10, e0120217.	2.5	16
12	Selective secretion of microRNA in CNS system. Protein and Cell, 2013, 4, 243-247.	11.0	11
13	Intracavernosal Pressure Recording to Evaluate Erectile Function in Rodents. Journal of Visualized Experiments, 2018, , .	0.3	8
14	SIRPÎ \pm deficiency accelerates the pathologic process in models of Parkinson disease. Glia, 2019, 67, 2343-2359.	4.9	8
15	Small RNA existed in commercial reverse transcriptase: primary evidence of functional small RNAs. Protein and Cell, 2015, 6, 1-5.	11.0	3
16	A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomedicine and Pharmacotherapy, 2022, 153, 113344.	5.6	3
17	Dendritic targeted mRNA expression via a cis-acting RNA UTR element. Biochemical and Biophysical Research Communications, 2019, 509, 402-406.	2.1	2
18	miR-128 regulates epilepsy sensitivity in mice by suppressing SNAP-25 and SYT1 expression in the hippocampus. Biochemical and Biophysical Research Communications, 2021, 545, 195-202.	2.1	2