List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4165278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. Journal of the American Chemical Society, 2014, 136, 7587-7590.	6.6	2,208
2	Hydrothermal Treatment of Grass: A Lowâ€Cost, Green Route to Nitrogenâ€Doped, Carbonâ€Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Labelâ€Free Detection of Cu(II) Ions. Advanced Materials, 2012, 24, 2037-2041.	11.1	1,345
3	Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Nonâ€Nobleâ€Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 6710-6714.	7.2	939
4	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie - International Edition, 2014, 53, 12855-12859.	7.2	816
5	Selfâ€Supported Cu ₃ P Nanowire Arrays as an Integrated Highâ€Performance Threeâ€Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie - International Edition, 2014, 53, 9577-9581.	7.2	784
6	Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants. ACS Applied Materials & Interfaces, 2013, 5, 6815-6819.	4.0	493
7	Ultrathin Graphitic Carbon Nitride Nanosheet: A Highly Efficient Fluorosensor for Rapid, Ultrasensitive Detection of Cu ²⁺ . Analytical Chemistry, 2013, 85, 5595-5599.	3.2	448
8	Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection. Macromolecules, 2010, 43, 10078-10083.	2.2	370
9	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	7.3	341
10	Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale, 2013, 5, 8921.	2.8	321
11	A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Advanced Materials, 2017, 29, 1702243.	11.1	303
12	Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale, 2013, 5, 11604.	2.8	300
13	A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon, 2011, 49, 3158-3164.	5.4	299
14	Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chemical Communications, 2011, 47, 961-963.	2.2	284
15	One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H ₂ O ₂ , and glucose sensing. RSC Advances, 2012, 2, 538-545.	1.7	274
16	Biomolecule-Assisted, Environmentally Friendly, One-Pot Synthesis of CuS/Reduced Graphene Oxide Nanocomposites with Enhanced Photocatalytic Performance. Langmuir, 2012, 28, 12893-12900.	1.6	269
17	In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catalysis Science and Technology, 2011, 1, 1142.	2.1	239
18	Three-Dimensional Porous Supramolecular Architecture from Ultrathin g-C ₃ N ₄ Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2014, 6, 1011-1017.	4.0	235

#	Article	IF	CITATIONS
19	Ultrathin Graphitic C ₃ N ₄ Nanosheets/Graphene Composites: Efficient Organic Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2014, 7, 2125-2130.	3.6	232
20	Self-supported NiMo hollow nanorod array: an efficient 3D bifunctional catalytic electrode for overall water splitting. Journal of Materials Chemistry A, 2015, 3, 20056-20059.	5.2	218
21	Cobalt Phosphide Nanowires: Efficient Nanostructures for Fluorescence Sensing of Biomolecules and Photocatalytic Evolution of Dihydrogen from Water under Visible Light. Angewandte Chemie - International Edition, 2015, 54, 5493-5497.	7.2	216
22	A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H ₂ O ₂ and glucose. RSC Advances, 2012, 2, 411-413.	1.7	201
23	Spinel CuCo ₂ O ₄ Nanoparticles Supported on N-Doped Reduced Graphene Oxide: A Highly Active and Stable Hybrid Electrocatalyst for the Oxygen Reduction Reaction. Langmuir, 2013, 29, 13146-13151.	1.6	192
24	Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: a heat-treatment-based strategy. Journal of Materials Chemistry, 2011, 21, 11726.	6.7	179
25	Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing. Biosensors and Bioelectronics, 2011, 26, 4491-4496.	5.3	176
26	Environmentally Friendly, One-Pot Synthesis of Ag Nanoparticle-Decorated Reduced Graphene Oxide Composites and Their Application to Photocurrent Generation. Inorganic Chemistry, 2012, 51, 4742-4746.	1.9	168
27	A Costâ€Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie, 2014, 126, 13069-13073.	1.6	168
28	FeP Nanoparticles Film Grown on Carbon Cloth: An Ultrahighly Active 3D Hydrogen Evolution Cathode in Both Acidic and Neutral Solutions. ACS Applied Materials & Interfaces, 2014, 6, 20579-20584.	4.0	166
29	One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes. Catalysis Science and Technology, 2012, 2, 339-344.	2.1	163
30	Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosensors and Bioelectronics, 2011, 26, 4656-4660.	5.3	156
31	Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chemical Communications, 2015, 51, 1616-1619.	2.2	153
32	Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy, 2018, 48, 284-291.	8.2	143
33	Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochemistry Communications, 2013, 32, 9-13.	2.3	133
34	Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu ²⁺ detection. Analyst, The, 2014, 139, 5065-5068.	1.7	111
35	Aniline as a dispersing and stabilizing agent for reduced graphene oxide and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Journal of Colloid and Interface Science, 2011, 363, 615-6 <u>19.</u>	5.0	108
36	Highly sensitive and selective colorimetric detection of Ag(I) ion using 3,3′,5,5′,-tetramethylbenzidine (TMB) as an indicator. Sensors and Actuators B: Chemical, 2012, 165, 44-47.	4.0	107

#	Article	IF	CITATIONS
37	Monodisperse, Micrometer-Scale, Highly Crystalline, Nanotextured Ag Dendrites: Rapid, Large-Scale, Wet-Chemical Synthesis and Their Application as SERS Substrates. ACS Applied Materials & Interfaces, 2010, 2, 2987-2991.	4.0	106
38	Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection â€. Nucleic Acids Research, 2011, 39, e37-e37.	6.5	103
39	Ag@Poly(<i>m</i> -phenylenediamine) Coreâ^'Shell Nanoparticles for Highly Selective, Multiplex Nucleic Acid Detection. Langmuir, 2011, 27, 2170-2175.	1.6	101
40	Cu/(Cu(OH) 2 -CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 2015, 163, 102-106.	2.6	101
41	Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. Journal of Nanoparticle Research, 2011, 13, 4539-4548.	0.8	100
42	Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst, The, 2012, 137, 1325.	1.7	99
43	Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 297, 120462.	10.8	95
44	Supramolecular Microfibrils of <i>o</i> -Phenylenediamine Dimers: Oxidation-Induced Morphology Change and the Spontaneous Formation of Ag Nanoparticle Decorated Nanofibers. Langmuir, 2010, 26, 15112-15116.	1.6	91
45	Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, The, 2011, 136, 1806.	1.7	86
46	Two-dimensional hybrid mesoporous Fe2O3–graphene nanostructures: A highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosensors and Bioelectronics, 2014, 52, 452-457.	5.3	86
47	Interface engineering of S-doped Co2P@Ni2P core–shell heterostructures for efficient and energy-saving water splitting. Chemical Engineering Journal, 2022, 439, 135743.	6.6	86
48	A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection. Catalysis Science and Technology, 2012, 2, 813.	2.1	85
49	Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. Journal of Materials Chemistry, 2011, 21, 824-828.	6.7	83
50	A new preparation of Au nanoplates and their application for glucose sensing. Biosensors and Bioelectronics, 2011, 28, 344-348.	5.3	83
51	High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. Journal of Materials Chemistry, 2012, 22, 8775.	6.7	83
52	Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal–organic framework nanorods: Synergies of the metal center and organic linker. Biosensors and Bioelectronics, 2015, 71, 1-6.	5.3	83
53	Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N,N-dimethylformamide. RSC Advances, 2011, 1, 951.	1.7	81
54	Ultrathin graphitic C3N4 nanofibers: Hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sensors and Actuators B: Chemical, 2015, 216, 453-460.	4.0	81

#	Article	IF	CITATIONS
55	Polyaniline nanofibres for fluorescent nucleic acid detection. Nanoscale, 2011, 3, 967.	2.8	77
56	Photocatalytic synthesis of highly dispersed Pd nanoparticles on reduced graphene oxide and their application in methanol electro-oxidation. Catalysis Science and Technology, 2012, 2, 1153.	2.1	74
57	Fast and Sensitive Colorimetric Detection of H ₂ O ₂ and Glucose: A Strategy Based on Polyoxometalate Clusters. ChemPlusChem, 2012, 77, 541-544.	1.3	71
58	Monitoring Dynamic Cellular Redox Homeostasis Using Fluorescence-Switchable Graphene Quantum Dots. ACS Nano, 2016, 10, 11475-11482.	7.3	71
59	Fe(<scp>iii</scp>)-based coordination polymernanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Catalysis Science and Technology, 2012, 2, 432-436.	2.1	70
60	Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. International Journal of Hydrogen Energy, 2015, 40, 9866-9871.	3.8	64
61	Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2013, 236, 188-191.	4.0	63
62	Production of stable aqueous dispersion of poly(3,4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection. Analyst, The, 2011, 136, 4898.	1.7	61
63	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. Small, 2017, 13, 1700798.	5.2	60
64	Iron-substituted SBA-15 microparticles: a peroxidase-like catalyst for H2O2 detection. Analyst, The, 2011, 136, 4894.	1.7	57
65	Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. Catalysis Science and Technology, 2011, 1, 1636.	2.1	57
66	Synergistically boosting the oxygen evolution reaction of an Fe-MOF <i>via</i> Ni doping and fluorination. Chemical Communications, 2020, 56, 7889-7892.	2.2	56
67	Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chemical Engineering Journal, 2022, 427, 131576.	6.6	56
68	Synthesis and Study of Plasmonâ€Induced Carrier Behavior at Ag/TiO ₂ Nanowires. Chemistry - A European Journal, 2012, 18, 8508-8514.	1.7	55
69	A novel single-labeled fluorescent oligonucleotide probe for silver(<scp>i</scp>) ion detection based on the inherent quenching ability of deoxyguanosines. Analyst, The, 2011, 136, 891-893.	1.7	53
70	Poly(<i>o</i> -phenylenediamine) Colloid-Quenched Fluorescent Oligonucleotide as a Probe for Fluorescence-Enhanced Nucleic Acid Detection. Langmuir, 2011, 27, 874-877.	1.6	53
71	A new application of mesoporous carbon microparticles to nucleic acid detection. Journal of Materials Chemistry, 2011, 21, 339-341.	6.7	53
72	Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130686.	6.6	53

#	Article	IF	CITATIONS
73	Ag@poly(m-phenylenediamine)-Ag core–shell nanoparticles: one-step preparation, characterization, and their application for H2O2 detection. Catalysis Science and Technology, 2011, 1, 1393.	2.1	51
74	One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catalysis Science and Technology, 2012, 2, 2227.	2.1	50
75	Photoassisted Preparation of Cobalt Phosphate/Graphene Oxide Composites: A Novel Oxygenâ€Evolving Catalyst with High Efficiency. Small, 2013, 9, 2709-2714.	5.2	50
76	PH-driven dissolution–precipitation: a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity. CrystEngComm, 2013, 15, 8300.	1.3	49
77	Efficient overall water splitting catalyzed by robust FeNi ₃ N nanoparticles with hollow interiors. Journal of Materials Chemistry A, 2021, 9, 7750-7758.	5.2	48
78	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
79	Phase structure tuning of graphene supported Ni-NiO Nanoparticles for enhanced urea oxidation performance. Electrochimica Acta, 2021, 370, 137755.	2.6	47
80	One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. RSC Advances, 2012, 2, 1318.	1.7	46
81	Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem, 2017, 5, 25-32.	2.8	46
82	Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78, 60-69.	5.4	44
83	Holey graphene nanosheets: large-scale rapid preparation and their application toward highly-effective water cleaning. Nanoscale, 2014, 6, 11659-11663.	2.8	43
84	Photochemical preparation of fluorescent 2,3-diaminophenazine nanoparticles for sensitive and selective detection of Hg(II) ions. Sensors and Actuators B: Chemical, 2012, 171-172, 886-890.	4.0	42
85	Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution. Nano Energy, 2020, 78, 105347.	8.2	38
86	Microwave-assisted rapid synthesis of Pt/graphene nanosheet composites and their application for methanol oxidation. Journal of Nanoparticle Research, 2011, 13, 4731-4737.	0.8	37
87	Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science and Technology, 2012, 2, 711.	2.1	35
88	Poly(m-Phenylenediamine) Nanospheres and Nanorods: Selective Synthesis and Their Application for Multiplex Nucleic Acid Detection. PLoS ONE, 2011, 6, e20569.	1.1	32
89	Nâ€Doped Carbonâ€Coated Tungsten Oxynitride Nanowire Arrays for Highly Efficient Electrochemical Hydrogen Evolution. ChemSusChem, 2015, 8, 2487-2491.	3.6	32
90	Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. Angewandte Chemie - International Edition, 2018, 57, 13484-13488.	7.2	32

#	Article	IF	CITATIONS
91	A novel acid-driven, microwave-assisted, one-pot strategy toward rapid production of graphitic N-doped carbon nanoparticles-decorated carbon flakes from N,N-dimethylformamide and their application in removal of dye from water. RSC Advances, 2012, 2, 4632.	1.7	31
92	Application of Zeolitic Imidazolate Frameworkâ€8 Nanoparticles for the Fluorescenceâ€Enhanced Detection of Nucleic Acids. ChemPlusChem, 2012, 77, 23-26.	1.3	29
93	Coordination Polymer Nanobelts as an Effective Sensing Platform for Fluorescenceâ€enhanced Nucleic Acid Detection. Macromolecular Rapid Communications, 2011, 32, 899-904.	2.0	28
94	Ternary Nanocomposites of Porphyrin, Angular Au Nanoparticles and Reduced Graphene Oxide: Photocatalytic Synthesis and Enhanced Photocurrent Generation. ChemCatChem, 2012, 4, 1079-1083.	1.8	25
95	Novel Use of Poly(3,4-ethylenedioxythiophene) Nanoparticles for Fluorescent Nucleic Acid Detection. ACS Combinatorial Science, 2012, 14, 191-196.	3.8	24
96	A Novel Single-Labeled Fluorescent Oligonucleotide Probe for Mercury(II) Ion Detection: Using the Inherent Quenching of Deoxyguanosines. Journal of Fluorescence, 2011, 21, 1049-1052.	1.3	22
97	Titanium silicalite-1 zeolite microparticles for enzymeless H2O2 detection. Analyst, The, 2011, 136, 2037.	1.7	21
98	Environmentally Friendly Photocatalytic Synthesis of Porphyrin/Ag Nanoparticles/Reduced Graphene Oxide Ternary Nanohybrids Having Superior Catalytic Activity. ChemPlusChem, 2012, 77, 545-550.	1.3	21
99	Facile synthesis of MWCNTs/Ag3PO4: novel photocatalysts with enhanced photocatalytic activity under visible light. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
100	Poly(2,3-diaminonaphthalene) microspheres as a novel quencher for fluorescence-enhanced nucleic acid detection. Analyst, The, 2011, 136, 2221.	1.7	15
101	Rectangular Coordination Polymer Nanoplates: Large-Scale, Rapid Synthesis and Their Application as a Fluorescent Sensing Platform for DNA Detection. PLoS ONE, 2012, 7, e30426.	1.1	15
102	Tetracyanoquinodimethane nanoparticles as an effective sensing platform for fluorescent nucleic acid detection. Analytical Methods, 2011, 3, 1051.	1.3	14
103	Fluorescence-Enhanced Potassium Ions Detection Based on Inherent Quenching Ability of Deoxyguanosines and K+-Induced Conformational Transition of G-Rich ssDNA from Duplex to G-Quadruplex Structures. Journal of Fluorescence, 2011, 21, 1841-1846.	1.3	14
104	Zinc-triggered photocatalytic selective synthesis of benzyl acetate on inverse spinel CuFe ₂ O ₄ 3D networks: a case of coupled redox photocatalytic reaction. Materials Advances, 2020, 1, 2773-2780.	2.6	8
105	Detection of single-stranded nucleic acids by hybridization of probe oligonucleotides on polystyrene nanospheres and subsequent release and recovery of fluorescence. RSC Advances, 2011, 1, 1318.	1.7	7
106	Semiconducting Polymer Nanobiocatalysts for Photoactivation of Intracellular Redox Reactions. Angewandte Chemie, 2018, 130, 13672-13676.	1.6	7
107	Wet chemical epitaxial growth of a cactus-like CuFeO ₂ /ZnO heterojunction for improved photocatalysis. Dalton Transactions, 2020, 49, 9574-9578.	1.6	7
108	Organic solvent-induced controllable crystallization of the inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of nanowires. Nanoscale, 2011, 3, 1553.	2.8	3

#	Article	IF	CITATIONS
109	A Novel Single Fluorophore-Labeled Double-Stranded Oligonucleotide Probe for Fluorescence-Enhanced Nucleic Acid Detection Based on the Inherent Quenching Ability of Deoxyguanosine Bases and Competitive Strand-Displacement Reaction. Journal of Fluorescence, 2012, 22, 43-46.	1.3	3
110	Extending lifetime of photoinduced charge carriers in CuO photocathode by Zn doping for photoelectrochemical water reduction. Journal of Solid State Chemistry, 2020, 290, 121603.	1.4	2
111	Electrodeposition-Based Construction of Random Arrays of Pt Nanoparticles on Glassy Carbon Electrode (GCE) Towards Methanol Oxidation Application. Journal of Nanoscience and Nanotechnology, 2011, 11, 4163-4166.	0.9	1
112	Macromol. Rapid Commun. 12/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0