Patrick M Dansette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 551-555.	7.1	322
2	Structure of a Substrate Complex of Mammalian Cytochrome P450 2C5 at 2.3 Ã Resolution:Â Evidence for Multiple Substrate Binding Modesâ€,‡. Biochemistry, 2003, 42, 6370-6379.	2.5	210
3	Structure of Mammalian Cytochrome P450 2C5 Complexed with Diclofenac at 2.1ÂÃ Resolution:Â Evidence for an Induced Fit Model of Substrate Bindingâ€,‡. Biochemistry, 2003, 42, 9335-9345.	2.5	195
4	Effects of Inducers and Epoxide Hydrase on the Metabolism of Benzo[a]pyrene by Liver Microsomes and a Reconstituted System: Analysis by High Pressure Liquid Chromatography. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 4356-4360.	7.1	194
5	Cytochrome P450 Enzymes Mechanism Based Inhibitors: Common Sub-Structures and Reactivity. Current Drug Metabolism, 2005, 6, 413-451.	1.2	186
6	Thiophene derivatives as new mechanism-based inhibitors of cytochromes P-450: Inactivation of yeast-expressed human liver cytochrome P-450 2C9 by tienilic acid. Biochemistry, 1994, 33, 166-175.	2.5	182
7	Ferrocenyl Quinone Methides as Strong Antiproliferative Agents: Formation by Metabolic and Chemical Oxidation of Ferrocenyl Phenols. Angewandte Chemie - International Edition, 2009, 48, 9124-9126.	13.8	170
8	Ticlopidine as a Selective Mechanism-Based Inhibitor of Human Cytochrome P450 2C19â€. Biochemistry, 2001, 40, 12112-12122.	2.5	165
9	Determinants of Cytochrome P450 2C8 Substrate Binding. Journal of Biological Chemistry, 2008, 283, 17227-17237.	3.4	143
10	Specificity of in vitro Covalent Binding of Tienilic Acid Metabolites to Human Liver Microsomes in Relationship to the Type of Hepatotoxicity: Comparison with Two Directly Hepatotoxic Drugs. Chemical Research in Toxicology, 1994, 7, 434-442.	3.3	139
11	Hepatotoxicity of germander in mice. Gastroenterology, 1994, 106, 464-472.	1.3	126
12	The Substrate Binding Site of Human Liver Cytochrome P450 2C9: An Approach Using Designed Tienilic Acid Derivatives and Molecular Modeling. Biochemistry, 1995, 34, 10365-10375.	2.5	126
13	Facile synthesis of arene oxides at the K regions of polycyclic hydrocarbons. Journal of the American Chemical Society, 1974, 96, 1224-1225.	13.7	124
14	Cytochromes P450 Catalyze Both Steps of the Major Pathway of Clopidogrel Bioactivation, whereas Paraoxonase Catalyzes the Formation of a Minor Thiol Metabolite Isomer. Chemical Research in Toxicology, 2012, 25, 348-356.	3.3	108
15	Continuous fluorometric assay of epoxide hydrase activity. Analytical Biochemistry, 1979, 97, 340-345.	2.4	107
16	Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Archives of Biochemistry and Biophysics, 2003, 409, 80-91.	3.0	105
17	Thiophene S-oxides as new reactive metabolites: formation by cytochrome P-450 dependent oxidation and reaction with nucleophiles. Journal of the American Chemical Society, 1991, 113, 7825-7826.	13.7	102
18	Chemical and Biological Oxidation of Thiophene:  Preparation and Complete Characterization of Thiophene S-Oxide Dimers and Evidence for Thiophene S-Oxide as an Intermediate in Thiophene Metabolism in Vivo and in Vitro. Journal of the American Chemical Society, 1997, 119, 1565-1571.	13.7	99

#	Article	IF	CITATIONS
19	Carcinogenicity of benzo[a]pyrene 4,5-, 7,8-, and 9,10-oxides on mouse skin Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 243-247.	7.1	95
20	Thiophene Sulfoxides as Reactive Metabolites:Â Formation upon Microsomal Oxidation of a 3-Aroylthiophene and Fate in the Presence of Nucleophilesin Vitroandin Vivo. Chemical Research in Toxicology, 1996, 9, 1403-1413.	3.3	90
21	Metabolic Oxidative Cleavage of Thioesters: Evidence for the Formation of Sulfenic Acid Intermediates in the Bioactivation of the Antithrombotic Prodrugs Ticlopidine and Clopidogrel. Chemical Research in Toxicology, 2009, 22, 369-373.	3.3	88
22	A new intermediate in naphthoquinone and menaquinone biosynthesis. Biochemical and Biophysical Research Communications, 1970, 40, 1090-1095.	2.1	87
23	Human-liver cytochromes P-450 expressed in yeast as tools for reactive-metabolite formation studies. Oxidative activation of tienilic acid by cytochromes P-450 2C9 and 2C10. FEBS Journal, 1993, 213, 223-232.	0.2	86
24	First evidence that cytochrome P450 may catalyze both S-oxidation and epoxidation of thiophene derivatives. Biochemical and Biophysical Research Communications, 2005, 338, 450-455.	2.1	86
25	Mutagenic and cytotoxic activity of benzol[a]pyrene 4,5-, 7,8-, and 9,10-oxides and the six corresponding phenols Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 3176-3180.	7.1	84
26	Epoxide hydrase and glutathione S-transferase activities with selected alkene and arene oxides in several marine species. Chemico-Biological Interactions, 1979, 25, 321-344.	4.0	81
27	Autoantibodies against Cytochromes P450: Role in Human Diseases. Advances in Pharmacology, 1994, 30, 199-245.	2.0	79
28	Evidence for thiophene-s-oxide as a primary reactive metabolite of thiophene in vivo: Formation of a dihydrothiophene sulfoxide mercapturic acid. Biochemical and Biophysical Research Communications, 1992, 186, 1624-1630.	2.1	78
29	A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione. Biochemical and Biophysical Research Communications, 1986, 135, 1015-1021.	2.1	76
30	Diclofenac and Its Derivatives As Tools for Studying Human Cytochromes P450 Active Sites: Particular Efficiency and Regioselectivity of P450 2Cs. Biochemistry, 1999, 38, 14264-14270.	2.5	76
31	Hydroxylation and formation of electrophilic metabolites of tienilic acid and its isomer by human liver microsomes. Biochemical Pharmacology, 1991, 41, 553-560.	4.4	73
32	Indirect Cytotoxicity of Flucloxacillin toward Human Biliary Epithelium via Metabolite Formation in Hepatocytes. Chemical Research in Toxicology, 2001, 14, 694-701.	3.3	73
33	Antigenic targets in tienilic acid hepatitis. Both cytochrome P450 2C11 and 2C11-tienilic acid adducts are transported to the plasma membrane of rat hepatocytes and recognized by human sera Journal of Clinical Investigation, 1996, 98, 1471-1480.	8.2	68
34	Opposite Behaviors of Reactive Metabolites of Tienilic Acid and Its Isomer toward Liver Proteins: Use of Specific Anti-Tienilic Acidâ^'Protein Adduct Antibodies and the Possible Relationship with Different Hepatotoxic Effects of the Two Compounds. Chemical Research in Toxicology, 1999, 12, 286-296.	3.3	61
35	Synthesis and spectral properties of the isomeric hydroxybenzo[a]pyrenes. Journal of Organic Chemistry, 1976, 41, 977-985.	3.2	59
36	The Substrate Binding Site of Human Liver Cytochrome P450 2C9:  An NMR Study. Biochemistry, 1997, 36, 12672-12682.	2.5	59

#	Article	IF	CITATIONS
37	Thiophene 1â€oxides. V . Comparison of the crystal structures and thiophene ring aromaticity of 2,5â€diphenylthiophene, its sulfoxide and sulfone. Journal of Heterocyclic Chemistry, 1997, 34, 1567-1574.	2.6	58
38	Oxidative activation of the thiophene ring by hepatic enzymes. Biochemical Pharmacology, 1990, 39, 911-918.	4.4	56
39	Unusual Regioselectivity and Active Site Topology of Human Cytochrome P450 2J2. Biochemistry, 2007, 46, 10237-10247.	2.5	56
40	Partial purification of human liver cytochrome P 450. Biochemical and Biophysical Research Communications, 1979, 88, 826-832.	2.1	53
41	Oxidation of Tienilic Acid by Human Yeast-Expressed Cytochromes P-450 2C8, 2C9, 2C18 and 2C19. Evidence that this Drug is A Mechanism-Based Inhibitor Specific for Cytochrome P-450 2C9. FEBS Journal, 1996, 241, 797-804.	0.2	52
42	Genetic predisposition to drug hepatotoxicity: Role in hepatitis caused by amineptine, a tricyclic antidepressant. Hepatology, 1989, 10, 168-173.	7.3	51
43	Paraoxonase-1 and clopidogrel efficacy. Nature Medicine, 2011, 17, 1040-1041.	30.7	50
44	Effect of phenobarbital and 3-methylcholanthrene administration on epoxide hydrase levels in liver microsomes. Biochemical Pharmacology, 1977, 26, 891-892.	4.4	48
45	Mechanism of catalysis for the hydration of substituted styrene oxides by hepatic epoxide hydrase. Archives of Biochemistry and Biophysics, 1978, 187, 290-298.	3.0	48
46	Metabolism of benzo[a]pyrene by brain microsomes of fetal and adult rats and mice. Induction by 5,6 benzoflavone, comparison with liver and lung microsomal activities. Carcinogenesis, 1981, 2, 919-926.	2.8	47
47	Selective, competitive and mechanism-based inhibitors of human cytochrome P450 2J2. Archives of Biochemistry and Biophysics, 2007, 464, 155-168.	3.0	47
48	Sulfenic acids as reactive intermediates in xenobiotic metabolism. Archives of Biochemistry and Biophysics, 2011, 507, 174-185.	3.0	46
49	Analysis of Human Cytochrome P450 2C8 Substrate Specificity Using a Substrate Pharmacophore and Site-Directed Mutantsâ€. Biochemistry, 2004, 43, 15379-15392.	2.5	45
50	Design and synthesis of selective, high-affinity inhibitors of human cytochrome P450 2J2. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2777-2780.	2.2	45
51	Improvement of Cyclophosphamide Activation by CYP2B6 Mutants: From in Silico to ex Vivo. Molecular Pharmacology, 2008, 73, 1122-1133.	2.3	44
52	A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties. Chemical Science, 2018, 9, 70-78.	7.4	44
53	Comparison of the mechanisms of solvolysis and rearrangement of K-region vs. non-K-region arene oxides of phenanthrene. Comparative solvolytic rate constants of K-region and non-K-region arene oxides. Journal of the American Chemical Society, 1976, 98, 2965-2973.	13.7	42
54	Metabolic hydroxylation of the thiophene ring: Isolation of 5-hydroxy-tienilic acid as the major urinary metabolite of tienilic acid in man and rat. Biochemical Pharmacology, 1984, 33, 1429-1435.	4.4	42

#	Article	IF	CITATIONS
55	Thiophene S-oxides: convenient preparation, first complete structural characterization and unexpected dimerization of one of them, 2,5-diphenylthiophene-1-oxide. Journal of the Chemical Society Chemical Communications, 1995, , 473.	2.0	41
56	Regioselectivity of olefin oxidation by iodosobenzene catalyzed by metalloporphyrins : control by the catalyst. Tetrahedron, 1984, 40, 2847-2857.	1.9	40
57	Engineering of a Water-Soluble Plant Cytochrome P450, CYP73A1, and NMR-Based Orientation of Natural and Alternate Substrates in the Active Site. Plant Physiology, 2003, 133, 1198-1208.	4.8	39
58	Assay and partial purification of epoxide hydrase from rat liver microsomes. Archives of Biochemistry and Biophysics, 1974, 164, 511-517.	3.0	38
59	Hydroxylation of the thiophene ring by hepatic monooxygenases. Biochemical Pharmacology, 1990, 39, 1101-1107.	4.4	36
60	Mechanism of the Aromatic Hydroxylation of Thiophene by Acid-Catalyzed Peracid Oxidation. Journal of Organic Chemistry, 2002, 67, 7261-7266.	3.2	36
61	Oxidative Metabolism of Ferrocene Analogues of Tamoxifen: Characterization and Antiproliferative Activities of the Metabolites. ChemMedChem, 2015, 10, 981-990.	3.2	33
62	Ferrocenyl Quinone Methide–Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Angewandte Chemie - International Edition, 2016, 55, 10431-10434.	13.8	33
63	Synthesis of Sulfaphenazole Derivatives and Their Use as Inhibitors and Tools for Comparing the Active Sites of Human Liver Cytochromes P450 of the 2C Subfamily. Journal of Medicinal Chemistry, 2001, 44, 3622-3631.	6.4	30
64	Formation and Fate of a Sulfenic Acid Intermediate in the Metabolic Activation of the Antithrombotic Prodrug Prasugrel. Chemical Research in Toxicology, 2010, 23, 1268-1274.	3.3	30
65	Sulfaphenazole Derivatives as Tools for Comparing Cytochrome P450 2C5 and Human Cytochromes P450 2Cs: Identification of a New High Affinity Substrate Common to Those Enzymesâ€. Biochemistry, 2003, 42, 6363-6369.	2.5	28
66	Membrane fluidity and drug metabolism in liver microsomes of lean, obob and dbdb mice. Biochemical and Biophysical Research Communications, 1980, 95, 41-46.	2.1	27
67	Dehydrogenation of the Indoline-Containing Drug 4-Chloro-N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (Indapamide) by CYP3A4: Correlation with in Silico Predictions. Drug Metabolism and Disposition, 2009, 37, 672-684.	3.3	27
68	Interaction of New Sulfaphenazole Derivatives with Human Liver Cytochrome P450 2Cs: Structural Determinants Required for Selective Recognition by CYP 2C9 and for Inhibition of Human CYP 2Cs. Archives of Biochemistry and Biophysics, 2001, 394, 189-200.	3.0	26
69	UPD-glucuronosyltransferase, epoxide hydrolase and gultathione S-transferase. Biochimica Et Biophysica Acta - General Subjects, 1981, 676, 274-277.	2.4	25
70	Comparison of the Substrate Specificities of Human Liver Cytochrome P450s 2C9 and 2C18:Â Application to the Design of a Specific Substrate of CYP 2C18. Biochemistry, 1999, 38, 7828-7836.	2.5	24
71	Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression. Molecular Psychiatry, 2020, 25, 1245-1259.	7.9	24
72	Kinetics of tienilic acid bioactivation and functional generation of drug–protein adducts in intact rat hepatocytes. Biochemical Pharmacology, 2005, 70, 1870-1882.	4.4	21

#	Article	IF	CITATIONS
73	Biotransformations Leading to Toxic Metabolites. , 2008, , 674-696.		21
74	Metabolic Activation of Prasugrel: Nature of the Two Competitive Pathways Resulting in the Opening of Its Thiophene Ring. Chemical Research in Toxicology, 2012, 25, 1058-1065.	3.3	21
75	Automated multiple analysis of protein structures: Application to homology modeling of cytochromes P450. , 1997, 28, 388-404.		20
76	Specific effects of chloride ion in the hydrolysis of a K-region arene oxide. Journal of the American Chemical Society, 1977, 99, 5672-5676.	13.7	19
77	Human Anti-Mitochondria Autoantibodies Appearing in Iproniazid-Induced Immunoallergic Hepatitis Recognize Human Liver Monoamine Oxidase B. Biochemical and Biophysical Research Communications, 1996, 218, 118-124.	2.1	19
78	Synthesis of (4-chlorophenyl)-(1-oxo-1λ4-benzo[b]thien-2-yl)methanone and study of its reactivity towards sulfur- and oxygen-containing nucleophiles. Tetrahedron, 1998, 54, 14811-14824.	1.9	19
79	In vivo administration of hydroxylated phenobarbital metabolites: effect on rat hepatic cytochromes P-450, epoxide hydrolase and udp-glucuronosyltransferase. Biochemical Pharmacology, 1980, 29, 1127-1133.	4.4	18
80	Ontogeny of Benzo(a)pyrene Hydroxylase, Epoxide Hydrolase and Glutathione-S Transferase in the Brain, Lung and Liver of C57B1/6 Mice. Developmental Pharmacology and Therapeutics, 1984, 7, 245-258.	0.2	18
81	Iron-porphyrin catalysis of the oxidative dealkylation of para-nitro-anisole and 7-ethoxycoumarin by cumylhydroperoxide: a possible model for the corresponding cytochrome P 450-dependent reactions. Biochemical and Biophysical Research Communications, 1980, 96, 433-439.	2.1	16
82	Oxidation of 2-(4-chlorobenzoyl)-thiophene into 1-oxide Diels-Alder dimers, sesquioxide and a sulfone-water adduct. Tetrahedron Letters, 1998, 39, 5049-5052.	1.4	16
83	Bioactivation of Clopidogrel and Prasugrel: Factors Determining the Stereochemistry of the Thiol Metabolite Double Bond. Chemical Research in Toxicology, 2015, 28, 1338-1345.	3.3	16
84	Synthesis and spectroscopic, electrochemical, and catalytic properties of a new manganese porphyrin bearing four positive charges close to the metal. Journal of Molecular Catalysis A, 2007, 263, 200-205.	4.8	14
85	Thiolactone Sulfoxides as New Reactive Metabolites Acting as Bis-Electrophiles: Implication in Clopidogrel and Prasugrel Bioactivation. Chemical Research in Toxicology, 2013, 26, 794-802.	3.3	14
86	The effect of some mixed function oxidase inducers on aryl háºdrocarbon hydroxylase and epoxide hydrase in nuclei and microsomes from rat liver and lung. The effect of cigarette smoke. European Journal of Cancer, 1979, 15, 915-922.	0.9	13
87	Sulfur Containing Compounds as Antioxidants. Advances in Experimental Medicine and Biology, 1990, 264, 209-215.	1.6	13
88	The shikimate pathway. Biochimie, 1974, 56, 751-755.	2.6	12
89	Induction of drug metabolizing enzymes in the liver of diabetic mice. Biochimie, 1982, 64, 961-967.	2.6	12
90	Inhibition by Ticlopidine and Its Derivatives of Human Liver Cytochrome P450. Mechanism-Based Inactivation of CYP 2C19 by Ticlopidine. Advances in Experimental Medicine and Biology, 2001, 500, 145-148.	1.6	12

#	Article	IF	CITATIONS
91	Optically active 4-substituted cis-1,2-diphenylethylene oxides and related 1,2-diphenylethane diols. Tetrahedron, 1976, 32, 2071-2074.	1.9	11
92	The end product of transglutaminase crosslinking: Simultaneous quantitation of [Nε-(γ-glutamyl) lysine] and lysine by HPLC–MS3. Analytical Biochemistry, 2009, 384, 296-304.	2.4	11
93	Amino Acids Bearing Aromatic or Heteroaromatic Substituents as a New Class of Ligands for the Lysosomal Sialic Acid Transporter Sialin. Journal of Medicinal Chemistry, 2020, 63, 8231-8249.	6.4	11
94	Lack of effect of trichloropropene oxide on benzo(a)pyrene tumor-initiating activity on mouse skin. European Journal of Cancer, 1979, 15, 77-83.	0.9	10
95	Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach. International Journal of Mass Spectrometry, 2007, 268, 284-295.	1.5	10
96	Evaluation of Deuterium Labeled and Unlabeled Bis-methyl Glutathione Combined with Nanoliquid Chromatographyâ^'Mass Spectrometry to Screen and Characterize Reactive Drug Metabolites. Chemical Research in Toxicology, 2011, 24, 412-417.	3.3	10
97	Ferrocenyl Quinone Methide–Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Angewandte Chemie, 2016, 128, 10587-10590.	2.0	10
98	Metabolism of Anethole Dithiolethione by Rat and Human Liver Microsomes: Formation of Various Products Deriving from Its <i>O</i> -Demethylation and <i>S</i> -Oxidation. Involvement of Cytochromes P450 and Flavin Monooxygenases in These Pathways. Drug Metabolism and Disposition, 2018, 46, 1390-1395.	3.3	10
99	Enzymatic characterization of the polynuclear aromatic hydrocarbons activating rat-liver preparations used in the mutagenicity test of Ames. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1984, 125, 123-133.	1.0	9
100	Biotransformations Leading to Toxic Metabolites. , 2015, , 585-614.		9
101	Endogenous induction of epoxide hydrolase, benzo(a)pyrene hydroxylase and glutathione-S-transferase in "responsive―C57B16 mice and in "nonresponsive―DBA2 mice during pregnancy. Biochemical and Biophysical Research Communications, 1983, 112, 313-319.	2.1	8
102	High-performance liquid chromatographic separation of 11-hydroxylauric acid enantiomers. Journal of Chromatography A, 1990, 498, 293-302.	3.7	8
103	Mechanism of H ₂ S Formation from the Metabolism of Anetholedithiolethione and Anetholedithiolone by Rat Liver Microsomes. Drug Metabolism and Disposition, 2019, 47, 1061-1065.	3.3	8
104	Diversity-oriented synthesis and bioactivity evaluation of N-substituted ferrocifen compounds as novel antiproliferative agents against TNBC cancer cells. European Journal of Medicinal Chemistry, 2022, 234, 114202.	5.5	8
105	Effect of purified epoxide hydrolase on metabolic activa-tion and binding of benzo(a)pyrene to exogenous DNA. Shift of the activation pathway. Biochemical and Biophysical Research Communications, 1980, 93, 611-616.	2.1	7
106	[<i>N</i> ^ε â€{γâ€glutamyl) lysine] as a potential biomarker in neurological diseases : New detection method and fragmentation pathways. Journal of Mass Spectrometry, 2008, 43, 456-469.	1.6	7
107	Role of Arginine 117 in Substrate Recognition by Human Cytochrome P450 2J2. International Journal of Molecular Sciences, 2018, 19, 2066.	4.1	7
108	New Biological Reactive Intermediates. Advances in Experimental Medicine and Biology, 1996, , 1-6.	1.6	7

#	Article	IF	CITATIONS
109	Specifically tritiated arene oxides. Journal of Labelled Compounds and Radiopharmaceuticals, 1976, 12, 127-132.	1.0	6
110	Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms. International Journal of Molecular Sciences, 2017, 18, 1553.	4.1	6
111	Comparison of Various Aryl-Dithiolethiones and Aryl-Dithiolones As Hydrogen Sulfide Donors in the Presence of Rat Liver Microsomes. Drug Metabolism and Disposition, 2020, 48, 426-431.	3.3	6
112	The shikimate pathway: I Preparation of 3-3H, 4-3H and 2,4-3H2 D-shikimic acid. Biochimie, 1973, 55, 583-589.	2.6	4
113	Metabolism of benzo[a]pyrene by mouse brain microsomes during perinatal development. Chemico-Biological Interactions, 1984, 48, 115-119.	4.0	4
114	CHEMICAL MECHANISMS OF TOXICITY: BASIC KNOWLEDGE FOR DESIGNING SAFER DRUGS. , 2003, , 545-560.		4
115	Monooxygenase- and Dioxygenase-Catalyzed Oxidative Dearomatization of Thiophenes by Sulfoxidation, cis-Dihydroxylation and Epoxidation. International Journal of Molecular Sciences, 2022, 23, 909.	4.1	4
116	In vitro metabolism of isaxonine phosphate: formation of two metabolites, 5-hydroxyisaxonine and 2-aminopyrimidine, and covalent binding to microsomal proteins. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1992, 228, 63-71.	0.8	3
117	Presence of benzo[a]pyrene metabolizing activities in isolated rat liver nucleoli. Carcinogenesis, 1981, 2, 1189-1193.	2.8	1
118	Structure du 2,3-dihydro-3-(2-hydroxyéthylthio)benzo[b]thiophène 1-oxyde, C10H12O2S2. Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 1808-1810.	0.4	0
119	Structure du 2,5-diphényl-3-furyl 2,5-diphényl-3-thiényl sulfoxyde. Acta Crystallographica Section C: Crystal Structure Communications, 1993, 49, 2009-2012	0.4	0