
Santiago Esplugas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 2004, 47, 219-256.	20.2	1,874
2	Comparison of different advanced oxidation processes for phenol degradation. Water Research, 2002, 36, 1034-1042.	11.3	918
3	Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials, 2007, 149, 631-642.	12.4	846
4	Use of fenton reagent to improve organic chemical biodegradability. Water Research, 2001, 35, 1047-1051.	11.3	491
5	Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 2012, 46, 1947-1957.	11.3	398
6	Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Research, 2008, 42, 585-594.	11.3	318
7	Ultrasonic treatment of water contaminated with ibuprofen. Water Research, 2008, 42, 4243-4248.	11.3	253
8	Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Research, 2010, 44, 589-595.	11.3	245
9	Sulfamethoxazole abatement by means of ozonation. Journal of Hazardous Materials, 2008, 150, 790-794.	12.4	239
10	Sulfamethoxazole abatement by photo-Fenton. Journal of Hazardous Materials, 2007, 146, 459-464.	12.4	193
11	Assessment of iron chelates efficiency forÂphoto-Fenton at neutral pH. Water Research, 2014, 61, 232-242.	11.3	184
12	How and why combine chemical and biological processes for wastewater treatment. Water Science and Technology, 1997, 35, 321-327.	2.5	171
13	Contribution of the ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol. Water Research, 2003, 37, 3164-3171.	11.3	167
14	Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Science of the Total Environment, 2009, 407, 3572-3578.	8.0	147
15	Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy, 2011, 85, 2732-2740.	6.1	147
16	Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. Catalysis Today, 2009, 144, 131-136.	4.4	141
17	How and why combine chemical and biological processes for wastewater treatment. Water Science and Technology, 1997, 35, 321.	2.5	130
18	Bezafibrate removal by means of ozonation: Primary intermediates, kinetics, and toxicity assessment. Water Research, 2007, 41, 2525-2532.	11.3	123

#	Article	IF	CITATIONS
19	Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 129-135.	3.9	122
20	Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: Kinetics, actinometries and models. Catalysis Today, 2005, 101, 227-236.	4.4	115
21	Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes. Water Research, 2009, 43, 3984-3991.	11.3	109
22	Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. Journal of Hazardous Materials, 2013, 263, 268-274.	12.4	99
23	Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: Solar and artificial light. Applied Catalysis B: Environmental, 2013, 130-131, 249-256.	20.2	99
24	Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO 2 and TiO 2 doped with 5% B: Primary active species and intermediates. Applied Catalysis B: Environmental, 2016, 194, 111-122.	20.2	94
25	Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. Journal of Hazardous Materials, 2017, 323, 242-249.	12.4	94
26	A comparative study of the advanced oxidation of 2,4-dichlorophenol. Journal of Hazardous Materials, 2004, 107, 123-129.	12.4	92
27	Transformation products and reaction kinetics in simulated solar light photocatalytic degradation of propranolol using Ce-doped TiO2. Applied Catalysis B: Environmental, 2013, 129, 13-29.	20.2	90
28	InactivaciÃ ³ n de formas esporuladas de Bacillus subtilis mediante campos eléctricos pulsantes de alta intensidad en combinacion con otras tecnicas de conservacion de alimentos/Inactivation of Bacillus subtilis spores using high intensity pulsed electric fields in combination with other food conservation technologies. Food Science and Technology International, 1998, 4, 33-44.	2.2	88
29	Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?. Environmental Research, 2016, 144, 11-18.	7.5	84
30	Effect of Salinity on the Photo-Fenton Process. Industrial & Engineering Chemistry Research, 2007, 46, 7615-7619.	3.7	83
31	Rheology of clarified fruit juices. III: Orange juices. Journal of Food Engineering, 1994, 21, 485-494.	5.2	82
32	Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol. Water Research, 2016, 88, 449-457.	11.3	82
33	Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants. Catalysis Today, 2002, 76, 177-188.	4.4	78
34	Optimizing the solar photo-Fenton process in the treatment of contaminated water. Determination of intrinsic kinetic constants for scale-up. Solar Energy, 2005, 79, 360-368.	6.1	78
35	Degradation of 4-chlorophenol by photolytic oxidation. Water Research, 1994, 28, 1323-1328.	11.3	77
36	UV- and UV/Fe(III)-enhanced ozonation of nitrobenzene in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 79-83.	3.9	75

#	Article	IF	CITATIONS
37	Photocatalytic treatment of metoprolol and propranolol. Catalysis Today, 2011, 161, 115-120.	4.4	71
38	Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments. Separation and Purification Technology, 2015, 156, 1028-1034.	7.9	71
39	Priority pesticides abatement by advanced water technologies: The case of acetamiprid removal by ozonation. Science of the Total Environment, 2017, 599-600, 1454-1461.	8.0	69
40	Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide. Water Science and Technology, 1997, 35, 95.	2.5	67
41	Advanced technologies for water treatment and reuse. AICHE Journal, 2015, 61, 3146-3158.	3.6	67
42	Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH. Applied Catalysis B: Environmental, 2015, 179, 372-379.	20.2	67
43	Photooxidation of the antidepressant drug Fluoxetine (Prozac®) in aqueous media by hybrid catalytic/ozonation processes. Water Research, 2011, 45, 2782-2794.	11.3	63
44	Advanced Oxidation Processes at Laboratory Scale: Environmental and Economic Impacts. ACS Sustainable Chemistry and Engineering, 2015, 3, 3188-3196.	6.7	63
45	Photocatalytic treatment of metoprolol with B-doped TiO2: Effect of water matrix, toxicological evaluation and identification of intermediates. Applied Catalysis B: Environmental, 2015, 176-177, 173-182.	20.2	61
46	Treatment of bleaching waters in the paper industry by hydrogen peroxide and ultraviolet radiation. Water Research, 1988, 22, 663-668.	11.3	60
47	The influence of different irradiation sources on the treatment of nitrobenzene. Catalysis Today, 2002, 76, 291-300.	4.4	60
48	Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol. Catalysis Today, 2015, 252, 27-34.	4.4	60
49	Engineering Aspects of the Integration of Chemical and Biological Oxidation: Simple Mechanistic Models for the Oxidation Treatment. Journal of Environmental Engineering, ASCE, 2004, 130, 967-974.	1.4	59
50	Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up. Catalysis Today, 2009, 144, 112-116.	4.4	59
51	Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Science of the Total Environment, 2019, 649, 592-600.	8.0	59
52	Mineralization of phenol in aqueous solution by ozonation using iron or copper salts and light. Applied Catalysis B: Environmental, 2003, 43, 139-149.	20.2	58
53	Study of the contribution of homogeneous catalysis on heterogeneous Fe(III)/alginate mediated photo-Fenton process. Chemical Engineering Journal, 2017, 318, 272-280.	12.7	55
54	Rate equation for the degradation of nitrobenzene by â€~Fenton-like' reagent. Journal of Environmental Management, 2003, 7, 583-595.	1.7	54

#	Article	IF	CITATIONS
55	Influence of H2O2 and Fe(III) in the photodegradation of nitrobenzene. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 133, 123-127.	3.9	53
56	Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate. Chemical Engineering Journal, 2017, 318, 206-213.	12.7	53
57	Rheology of clarified fruit juices. I: Peach juices. Journal of Food Engineering, 1992, 15, 49-61.	5.2	52
58	Abatement of ozone-recalcitrant micropollutants during municipal wastewater ozonation: Kinetic modelling and surrogate-based control strategies. Chemical Engineering Journal, 2019, 360, 1092-1100.	12.7	52
59	Photodecomposition of carbendazim in aqueous solutions. Water Research, 2000, 34, 2951-2954.	11.3	49
60	Iron(III) photoxidation of organic compounds in aqueous solutions. Applied Catalysis B: Environmental, 2002, 37, 131-137.	20.2	49
61	Performance and kinetic modelling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters. Applied Catalysis B: Environmental, 2019, 249, 211-217.	20.2	49
62	A jacketed annular membrane photocatalytic reactor for wastewater treatment: degradation of formic acid and atrazine. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 71, 291-297.	3.9	45
63	o-Nitrobenzaldehyde actinometry in the presence of suspended TiO2 for photocatalytic reactors. Catalysis Today, 2013, 209, 209-214.	4.4	44
64	Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide. Water Science and Technology, 1997, 35, 95-102.	2.5	42
65	Degradation of Metoprolol by photo-Fenton: Comparison of different photoreactors performance. Chemical Engineering Journal, 2016, 283, 639-648.	12.7	42
66	Catalytic ozonation by metal ions for municipal wastewater disinfection and simulataneous micropollutants removal. Applied Catalysis B: Environmental, 2019, 259, 118104.	20.2	42
67	Photochemical degradation of parathion in aqueous solutions. Water Research, 1992, 26, 911-915.	11.3	41
68	Priority pesticide dichlorvos removal from water by ozonation process: Reactivity, transformation products and associated toxicity. Separation and Purification Technology, 2018, 192, 123-129.	7.9	41
69	Investigation of chlorimuron-ethyl degradation by Fenton, photo-Fenton and ozonation processes. Chemical Engineering Journal, 2012, 210, 444-450.	12.7	40
70	Photochemical oxidation of municipal secondary effluents at low H2O2 dosage: Study of hydroxyl radical scavenging and process performance. Chemical Engineering Journal, 2014, 237, 268-276.	12.7	40
71	Application of UV and UV/H2O2 to seawater: Disinfection and natural organic matter removal. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233, 40-45.	3.9	39
72	Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. Journal of Hazardous Materials, 2012, 213-214, 325-330.	12.4	39

#	Article	IF	CITATIONS
73	Performance of a Sequencing Batch Biofilm Reactor for the treatment of pre-oxidized Sulfamethoxazole solutions. Water Research, 2009, 43, 2149-2158.	11.3	38
74	Ozonation treatment of urban primary and biotreated wastewaters: Impacts and modeling. Chemical Engineering Journal, 2016, 283, 768-777.	12.7	36
75	Combining photo-Fenton process with biological sequencing batch reactor for 2,4-dichlorophenol degradation. Water Science and Technology, 2004, 49, 293-298.	2.5	35
76	Study of the wavelength effect in the photolysis and heterogeneous photocatalysis. Catalysis Today, 2007, 129, 231-239.	4.4	34
77	Degradation of 2,4-D By Ozone And Light. Ozone: Science and Engineering, 1994, 16, 235-245.	2.5	33
78	Kinetics of the UV degradation of atrazine in aqueous solution in the presence of hydrogen peroxide. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 88, 65-74.	3.9	33
79	Degradation kinetics and pathways of three calcium channel blockers under UV irradiation. Water Research, 2015, 86, 9-16.	11.3	33
80	Treatment of Diphenhydramine with different AOPs including photo-Fenton at circumneutral pH. Chemical Engineering Journal, 2017, 318, 112-120.	12.7	33
81	Application of solar advanced oxidation processes to the degradation of the antibiotic sulfamethoxazole. Photochemical and Photobiological Sciences, 2009, 8, 1032-1039.	2.9	32
82	Characterization of natural organic matter from Mediterranean coastal seawater. Journal of Water Supply: Research and Technology - AQUA, 2013, 62, 42-51.	1.4	32
83	Photo-Fenton treatment of valproate under UVC, UVA and simulated solar radiation. Journal of Hazardous Materials, 2017, 323, 537-549.	12.4	32
84	Coupled photochemical-biological system to treat biorecalcitrant wastewater. Water Science and Technology, 2007, 55, 95-100.	2.5	31
85	Ozone-Based Processes Applied to Municipal Secondary Effluents. Ozone: Science and Engineering, 2011, 33, 243-249.	2.5	31
86	Micropollutant removal in real WW by photo-Fenton (circumneutral and acid pH) with BLB and LED lamps. Chemical Engineering Journal, 2020, 379, 122416.	12.7	31
87	Oxidation of nitrobenzene by O3/UV: the influence of H2O2 and Fe(III). Experiences in a pilot plant. Water Science and Technology, 2001, 44, 39-46.	2.5	30
88	NOM characterization by LC-OCD in a SWRO desalination line. Desalination and Water Treatment, 2013, 51, 1776-1780.	1.0	30
89	High-Temperature Reaction of Kaolin with Sulfuric Acid. Industrial & Engineering Chemistry Research, 2002, 41, 4168-4173.	3.7	28
90	Wet peroxide oxidation of chlorophenols. Water Research, 2005, 39, 795-802.	11.3	28

#	Article	IF	CITATIONS
91	Performance of different advanced oxidation technologies for the abatement of the beta-blocker metoprolol. Catalysis Today, 2015, 240, 86-92.	4.4	28
92	Synergies, radiation and kinetics in photo-Fenton process with UVA-LEDs. Journal of Hazardous Materials, 2019, 380, 120882.	12.4	28
93	Organic fertilizer as a chelating agent in photo-Fenton at neutral pH with LEDs for agricultural wastewater reuse: Micropollutant abatement and bacterial inactivation. Chemical Engineering Journal, 2020, 388, 124246.	12.7	28
94	Ultrafiltration of aqueous solutions containing organic polymers. Desalination, 2006, 189, 110-118.	8.2	27
95	Continuous versus single H2O2 addition in peroxone process: Performance improvement and modelling in wastewater effluents. Journal of Hazardous Materials, 2020, 387, 121993.	12.4	27
96	Comparison of Different Advanced Oxidation Processes Involving Ozone to Eliminate Atrazine. Ozone: Science and Engineering, 1999, 21, 39-52.	2.5	26
97	Ozonation of Propranolol: Transformation, Biodegradability, and Toxicity Assessment. Journal of Environmental Engineering, ASCE, 2011, 137, 754-759.	1.4	26
98	Atrazine Removal in Municipal Secondary Effluents by Fenton and Photoâ€Fenton Treatments. Chemical Engineering and Technology, 2013, 36, 2155-2162.	1.5	26
99	Ozone/H2O2Performance on the Degradation of Sulfamethoxazole. Ozone: Science and Engineering, 2015, 37, 509-517.	2.5	26
100	Evaluation of <scp>UV</scp> / <scp>H₂O₂</scp> for the disinfection and treatment of municipal secondary effluents for water reuse. Journal of Chemical Technology and Biotechnology, 2013, 88, 1697-1706.	3.2	25
101	Ozonation of NSAID: A Biodegradability and Toxicity Study. Ozone: Science and Engineering, 2010, 32, 91-98.	2.5	24
102	Disinfection of Seawater: Application of UV and Ozone. Ozone: Science and Engineering, 2013, 35, 63-70.	2.5	23
103	Adsorption and Photocatalytic Decomposition of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>î²</mml:mi></mml:mrow>-Blocker Metoprolol in Aqueous Titanium Dioxide Suspensions: Kinetics, Intermediates, and Degradation Pathways. International</mml:math 	2.5	23
104	Journal of Photoenergy, 2010, 2010, 1-10. Catalytic studies for the abatement of emerging contaminants by ozonation. Journal of Chemical Technology and Biotechnology, 2015, 90, 1611-1618.	3.2	23
105	A new methodology for the optimal design and production schedule of multipurpose batch plants. Industrial & Engineering Chemistry Research, 1989, 28, 988-998.	3.7	22
106	BAC filtration to mitigate micropollutants and EfOM content in reclamation reverse osmosis brines. Chemical Engineering Journal, 2015, 279, 589-596.	12.7	22
107	Improvement of the photo-Fenton process at natural condition of pH using organic fertilizers mixtures: Potential application to agricultural reuse of wastewater. Applied Catalysis B: Environmental, 2021, 290, 120066.	20.2	22
108	Influence of lamp position on the performance of the annular photoreactor. The Chemical Engineering Journal, 1983, 27, 107-111.	0.3	20

#	Article	IF	CITATIONS
109	Wet oxidation of 4-chlorophenol. Chemical Engineering Journal, 2007, 126, 59-65.	12.7	20
110	Higher intrinsic photocatalytic efficiency of 2,4,6-triphenylpyrylium-based photocatalysts compared to TiO2 P-25 for the degradation of 2,4-dichlorophenol using solar simulated light. Chemosphere, 2008, 72, 67-74.	8.2	20
111	Photocatalytic diphenhydramine degradation under different radiation sources: Kinetic studies and energetic comparison. Applied Catalysis B: Environmental, 2018, 220, 497-505.	20.2	20
112	Kinetic study of colored species formation during paracetamol removal from water in a semicontinuous ozonation contactor. Science of the Total Environment, 2019, 649, 1434-1442.	8.0	20
113	Radiation field inside a tubular multilamp reactor for water and wastewater treatment. Industrial & Engineering Chemistry Research, 1990, 29, 1270-1278.	3.7	19
114	Ultrafiltration of aqueous solutions containing dextran. Desalination, 2006, 188, 217-227.	8.2	19
115	Comparing the photocatalytic oxidation of Metoprolol in a solarbox and a solar pilot plant reactor. Chemical Engineering Journal, 2014, 254, 17-29.	12.7	19
116	Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes. Environmental Science and Pollution Research, 2019, 26, 4348-4366.	5.3	19
117	Ozonization of bleaching waters of the paper industry. Water Research, 1989, 23, 51-55.	11.3	18
118	Photodecomposition of 2,4-dichlorophenoxyacetic acid: Influence of pH. Journal of Chemical Technology and Biotechnology, 2007, 57, 273-279.	3.2	18
119	Hydrogen photoproduction in a continuous flow system with u.vlight and aqueous suspensions of RuOx/Pt/TiO2. International Journal of Hydrogen Energy, 1985, 10, 221-226.	7.1	17
120	Ozone and ozone/UV decolorization of bleaching waters of the paper industry. Industrial & Engineering Chemistry Research, 1990, 29, 349-355.	3.7	17
121	A REACTOR MODEL FOR WATER PHOTOLYSIS EXPERIMENTAL STUDIES IN THE LIQUID PHASE WITH SUSPENSIONS OF CATALYTIC PARTICLES. Chemical Engineering Communications, 1987, 51, 221-232.	2.6	16
122	High temperature reaction of kaolin with inorganic acids. Advances in Applied Ceramics, 2001, 100, 203-206.	0.4	16
123	Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement. Chemosphere, 2017, 186, 725-732.	8.2	16
124	Evaluation of the main active species involved in the TiO2 photocatalytic degradation of ametryn herbicide and its by-products. Journal of Environmental Chemical Engineering, 2021, 9, 105109.	6.7	16
125	Advanced UV/H2O2 oxidation of deca-bromo diphenyl ether in sediments. Science of the Total Environment, 2014, 479-480, 17-20.	8.0	15
126	Photocatalytic treatment of valproic acid sodium salt with TiO 2 in different experimental devices: An economic and energetic comparison. Chemical Engineering Journal, 2017, 327, 656-665.	12.7	15

#	Article	IF	CITATIONS
127	Mixtures of chelating agents to enhance photo-Fenton process at natural pH: Influence of wastewater matrix on micropollutant removal and bacterial inactivation. Science of the Total Environment, 2021, 786, 147416.	8.0	15
128	Photolysis and TiO2 Photocatalytic Treatment of Naproxen: Degradation, Mineralization, Intermediates and Toxicity. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	14
129	Application of bioassay panel for assessing the impact of advanced oxidation processes on the treatment of reverse osmosis brine. Journal of Chemical Technology and Biotechnology, 2014, 89, 1168-1174.	3.2	14
130	Improving ferrate disinfection and decontamination performance at neutral pH by activating peroxymonosulfate under solar light. Chemical Engineering Journal, 2022, 450, 137904.	12.7	14
131	Kinetic Study of 4-Chloro-2-methylphenoxyacetic Acid Photodegeneration. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 645-649.	0.5	12
132	Role of sunlight and oxygen on the performance of photo-Fenton process at near neutral pH using organic fertilizers as iron chelates. Science of the Total Environment, 2022, 803, 149873.	8.0	12
133	Assessment of Cationic Surfactants Mineralization by Ozonation and Photoâ€Fenton Process. Water Environment Research, 2009, 81, 201-205.	2.7	11
134	Modeling of absorbed radiation profiles in a system composed by a plane photoreactor and a single lamp. Food Research International, 2011, 44, 3111-3114.	6.2	11
135	Influence of lamp position on available radiation flux in an annular photoreactor. The Chemical Engineering Journal, 1987, 34, 111-115.	0.3	10
136	Comparative Study of 2,4-Dichlorophenol Degradation With Different Advanced Oxidation Processes. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 60-67.	1.8	10
137	Reverse osmosis concentrate treatment by chemical oxidation and moving bed biofilm processes. Water Science and Technology, 2013, 68, 2421-2426.	2.5	10
138	A New Extraction Procedure for Simultaneous Quantitative Determination of Water-soluble Metals in Reaction Products of Clays and Inorganic Salts. Clays and Clay Minerals, 2002, 50, 401-405.	1.3	9
139	2,4-Dichlorophenol degradation by means of heterogeneous photocatalysis. Comparison between laboratory and pilot plant performance. Chemical Engineering Journal, 2013, 232, 405-417.	12.7	9
140	Coagulation-flocculation followed by catalytic ozonation processes for enhanced primary treatment during wet weather conditions. Journal of Environmental Management, 2021, 283, 111975.	7.8	9
141	On disclosing the role of mesoporous alumina in the ozonation of sulfamethoxazole: Adsorption vs. Catalysis. Chemical Engineering Journal, 2021, 412, 128579.	12.7	9
142	Optimal production strategy and design of multiproduct batch plants. Industrial & Engineering Chemistry Research, 1990, 29, 590-600.	3.7	8
143	Sequential Ozonation and Biological Oxidation of Wastewaters: A Model Including Biomass Inhibition by Residual Oxidant. Ozone: Science and Engineering, 2003, 25, 95-105.	2.5	8
144	Biological activity in expanded clay (EC) and granulated activated carbon (GAC) seawater filters. Desalination, 2013, 328, 67-73.	8.2	8

#	Article	IF	CITATIONS
145	Characterization and fate of EfOM during ozonation applied for effective abatement of recalcitrant micropollutants. Separation and Purification Technology, 2020, 237, 116468.	7.9	8
146	Design and experimental verification of a tubular multilamp reactor for water and wastewater treatment. Industrial & Engineering Chemistry Research, 1990, 29, 1278-1283.	3.7	6
147	Photochemical degradation of malathion in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 68, 121-129.	3.9	6
148	Application of advanced oxidation for the removal of micropollutants in secondary effluents. Journal of Water Reuse and Desalination, 2012, 2, 121-126.	2.3	6
149	Reactions of bisphenol F and bisphenol S with ozone and hydroxyl radical: Kinetics and mechanisms. Science of the Total Environment, 2022, 846, 157173.	8.0	6
150	Biodegradability Improvement of Aqueous 2,4-Dichlorophenol And Nitrobenzene Solutions By Means of Single Ozonation. Ozone: Science and Engineering, 2005, 27, 381-387.	2.5	5
151	Degradation of 2,4-Dichlorophenol by Combining Photo-Assisted Fenton Reaction and Biological Treatment. Water Environment Research, 2006, 78, 590-597.	2.7	5
152	Combination of photo-Fenton and biological SBBR processes for sulfamethoxazole remediation. Water Science and Technology, 2008, 58, 1707-1713.	2.5	5
153	Oestrogenicity assessment of s-triazines by-products during ozonation. Environmental Technology (United Kingdom), 2015, 36, 1538-1546.	2.2	5
154	Effect of the reflector shape on the performance of multilamp photoreactors applied to pollution abatement. Industrial & Engineering Chemistry Research, 1990, 29, 1283-1289.	3.7	4
155	Photodegradation of Benzoic Acid in Aqueous Solutions. Environmental Technology (United) Tj ETQq1 1 0.7843	14.rgBT /C	Overlock 10 Th
156	Abatement of 4-Chlorophenol in Aqueous Phase by Ozonation Coupled with a Sequencing Batch Biofilm Reactor (SBBR). Ozone: Science and Engineering, 2008, 30, 447-455.	2.5	4
157	Influence of High Salinity on the Degradation of Humic Acid by UV254and H2O2/UV254. Ozone: Science and Engineering, 2012, 34, 101-108.	2.5	4
158	Direct evaluation of the absorbed photon flow in a photocatalytic reactor by an actinometric method. Chemical Engineering Journal, 2012, 200-202, 158-167.	12.7	4
159	A Comparison of the Environmental Impact of Different AOPs: Risk Indexes. Molecules, 2015, 20, 503-518.	3.8	4
160	Application of Ozone on Activated Sludge: Micropollutant Removal and Sludge Quality. Ozone: Science and Engineering, 2017, 39, 319-332.	2.5	4
161	Economic Aspects of Integrated (Chemical + Biological) Processes for Water Treatment. Journal of Advanced Oxidation Technologies, 1997, 2, .	0.5	3
162	Simple Models for the Control of Photo-Fenton by Monitoring H2O2. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	3

#	Article	IF	CITATIONS
163	Characterization and Control Strategies of an Integrated Chemicalâ^'Biological System for the Remediation of Toxic Pollutants in Wastewater: A Case of Study. Industrial & Engineering Chemistry Research, 2010, 49, 6972-6976.	3.7	3
164	Ozonation of Municipal Secondary Effluent; Removal of Hazardous Micropollutants and Related Changes of Organic Matter Composition. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	2
165	Influence of Physical and Optical Parameters on 2,4-Dichlorophenol Degradation. International Journal of Chemical Reactor Engineering, 2013, 11, 765-772.	1.1	2
166	TEMPERATURE INFLUENCE ON NORBORNADIENE PHOTOISOMERIZATION SENSITIZED WITH ACETOPHEHONE. Chemical Engineering Communications, 1991, 99, 117-128.	2.6	1
167	Photodecomposition of the sex pheromones of Cydia pomonella and Lobesia botrana in aqueous solutions. Chemosphere, 1998, 36, 427-434.	8.2	1
168	Approach to TiO2–light interaction in heterogeneous photocatalysis. Water Science and Technology, 2007, 55, 147-151.	2.5	1
169	Kinetic study of sensitized norbornadiene photoisomerization. Journal of Chemical Technology and Biotechnology, 1987, 40, 101-115.	3.2	1
170	Removal of Pharmaceutically Active Compounds (PhACs) in Wastewater by Ozone and Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 269-298.	0.4	1
171	Absorbed radiation and kinetic model in photocatalysis by TiO2. International Journal of Chemical Reactor Engineering, 2021, .	1.1	1
172	Engineering Aspects of the Continuous Treatment of Fluid Foods by Pulsed Electric Fields. Food Preservation Technology, 2001, , .	0.0	1
173	Kinetics of Wet Oxidation Reactions. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	1
174	The annular photoreactor. Journal of Photochemistry and Photobiology, 1981, 17, 29.	0.6	0
175	Biodegradability Enhancement of Wastewater Containing 4-Chlorophenol by Means of Photo-Fenton. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	0
176	Biodegradation of Photo-Fenton Pre-Treated Solutions of Sulfamethoxazole by Aerobic Communities. Molecular Biology Techniques Applied to the Determination of Existing Strains. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	0
177	Comparison of Emerging NSAID Pollutants Degradation in Aqueous Media by O3/UV-VIS Processes. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	0
178	Recent Advances in Valorization Methods of Inorganic/Organic Solid, Liquid, and Gas Wastes. International Journal of Chemical Engineering, 2012, 2012, 1-2.	2.4	0
179	New insights in photo-Fenton process at neutral pH: organic fertilizer as an iron complex for agricultural irrigation reuse , 0, , .		0
180	TiO2 photocatalyst reactivity in highly saline water under simulated sunlight irradiation Â. , 0, , .		0

#	Article	IF	CITATIONS
181	Photo-Fenton treatment for the removal of contaminants of emerging concern in wastewaters. , 0, , .		0