Zuzana KolaÅÃ^MkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4164093/publications.pdf Version: 2024-02-01

		567281	642732
23	1,497	15	23
papers	citations	h-index	g-index
23	23	23	1955
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology, 2006, 15, 2277-2289.	3.9	281
2	The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza, 2007, 18, 1-14.	2.8	198
3	Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes. PLoS ONE, 2011, 6, e16793.	2.5	198
4	Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution?. Soil Biology and Biochemistry, 2014, 68, 482-493.	8.8	141
5	Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiology Ecology, 2012, 80, 216-235.	2.7	119
6	Cooccurring <i>Gentiana verna</i> and <i>Gentiana acaulis</i> and Their Neighboring Plants in Two Swiss Upper Montane Meadows Harbor Distinct Arbuscular Mycorrhizal Fungal Communities. Applied and Environmental Microbiology, 2007, 73, 5426-5434.	3.1	85
7	Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza, 2011, 21, 403-412.	2.8	78
8	Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia, 2006, 98, 286-294.	1.9	60
9	Diversity of mitochondrial large subunit rDNA haplotypes of <i>Glomus intraradices</i> in two agricultural field experiments and two semiâ€natural grasslands. Molecular Ecology, 2010, 19, 1497-1511.	3.9	49
10	Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza, 2012, 22, 69-80.	2.8	48
11	Root-associated fungal communities along a primary succession on a mine spoil: Distinct ecological guilds assemble differently. Soil Biology and Biochemistry, 2017, 113, 143-152.	8.8	46
12	Extensive sampling and high-throughput sequencing reveal Posidoniomyces atricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys, 2019, 55, 59-86.	1.9	34
13	<i>Geosmithia</i> associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia, 2017, 109, 185-199.	1.9	29
14	PacBio sequencing of Glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 490-499.	7.3	29
15	Terminal restriction fragment length measurement errors are affected mainly by fragment length, G + C nucleotide content and secondary structure melting point. Journal of Microbiological Methods, 2010, 82, 223-228.	1.6	28
16	Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N. Mycorrhiza, 2006, 16, 421-427.	2.8	16
17	Forest reclamation of fly ash deposit: a field study on appraisal of mycorrhizal inoculation. Restoration Ecology, 2016, 24, 184-193.	2.9	15
18	Establishment of mycorrhizal symbiosis inGentiana verna. Folia Geobotanica, 2003, 38, 177-189.	0.9	12

#	Article	IF	CITATIONS
19	Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. Fungal Ecology, 2020, 45, 100914.	1.6	10
20	Sympatric diploid and tetraploid cytotypes of <i>Centaurea stoebe</i> s.l. do not differ in arbuscular mycorrhizal communities and mycorrhizal growth response. American Journal of Botany, 2018, 105, 1995-2007.	1.7	9
21	The importance of arbuscular mycorrhiza for Cyclamen purpurascens subsp. immaculatum endemic in Slovakia. Mycorrhiza, 2015, 25, 599-609.	2.8	6
22	Survival and long-term infectivity of arbuscular mycorrhizal fungi in peat-based substrates stored under different temperature regimes. Applied Soil Ecology, 2019, 140, 98-107.	4.3	3
23	Symbiosis of isoetid plant species with arbuscular mycorrhizal fungi under aquatic versus terrestrial conditions. Mycorrhiza, 2021, 31, 273-288.	2.8	3