Edvin Lundgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4163784/publications.pdf

Version: 2024-02-01

289 papers 11,344 citations

20797 60 h-index 91 g-index

295 all docs

295
docs citations

times ranked

295

8491 citing authors

#	Article	IF	CITATIONS
1	Steps and catalytic reactions: CO oxidation with preadsorbed O on Rh(553). Surface Science, 2022, 715, 121928.	0.8	2
2	Thickness and composition of native oxides and near-surface regions of Ni superalloys. Journal of Alloys and Compounds, 2022, 895, 162657.	2.8	33
3	Infrared surface spectroscopy and surface optical reflectance for operando catalyst surface characterization. Applied Surface Science, 2022, 578, 152048.	3.1	4
4	Oxidation and Reduction of Ir(100) Studied by High-Energy Surface X-ray Diffraction. Journal of Physical Chemistry C, 2022, 126, 5244-5255.	1.5	6
5	Structural Changes in Monolayer Cobalt Oxides under Ambient Pressure CO and O ₂ Studied by In Situ Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 3411-3418.	1.5	9
6	Structure of an Ultrathin Oxide on $Pt < sub > 3 < / sub > Sn(111)$ Solved by Machine Learning Enhanced Global Optimization**. Angewandte Chemie, 2022, 134, .	1.6	3
7	Structure of an Ultrathin Oxide on $Pt < sub > 3 < sub > 5n(111)$ Solved by Machine Learning Enhanced Global Optimization**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
8	Templated electrodeposition as a scalable and surfactant-free approach to the synthesis of Au nanoparticles with tunable aspect ratios. Nanoscale Advances, 2022, 4, 2452-2467.	2,2	5
9	Visualizing the Gas Diffusion Induced Ignition of a Catalytic Reaction. ACS Catalysis, 2022, 12, 6589-6595.	5.5	6
10	In situ scanning x-ray diffraction reveals strain variations in electrochemically grown nanowires. Journal Physics D: Applied Physics, 2021, 54, 235301.	1.3	7
11	<i>Operando</i> Reflectance Microscopy on Polycrystalline Surfaces in Thermal Catalysis, Electrocatalysis, and Corrosion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19530-19540.	4.0	14
12	The Structure of the Active Pd State During Catalytic Carbon Monoxide Oxidization. Journal of Physical Chemistry Letters, 2021, 12, 4461-4465.	2.1	15
13	Bridging the Pressure Gap in CO Oxidation. ACS Catalysis, 2021, 11, 9128-9135.	5.5	14
14	Quantitative powder diffraction using a (2â€+â€3) surface diffractometer and an area detector. Journal of Applied Crystallography, 2021, 54, 1140-1152.	1.9	6
15	Revisiting Optical Reflectance from $Au(111)$ Electrode Surfaces with Combined High-Energy Surface X-ray Diffraction. Journal of the Electrochemical Society, 2021, 168, 096511.	1.3	9
16	Reduced Carbon Monoxide Saturation Coverage on Vicinal Palladium Surfaces: the Importance of the Adsorption Site. Journal of Physical Chemistry Letters, 2021, 12, 9508-9515.	2.1	3
17	Operando Stability Studies of Ultrathin Single-Crystalline IrO ₂ (110) Films under Acidic Oxygen Evolution Reaction Conditions. ACS Catalysis, 2021, 11, 12651-12660.	5.5	17
18	Combining PM-IRRAS with optical imaging techniques for operando studies of CO oxidation. , 2021, , .		0

#	Article	IF	Citations
19	High energy surface x-ray diffraction applied to model catalyst surfaces at work. Journal of Physics Condensed Matter, 2021, 33, 073001.	0.7	11
20	Recent advances in surface x-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis. Current Opinion in Electrochemistry, 2020, 23, 162-173.	2.5	18
21	<i>In situ</i> studies of the cathodic stability of single-crystalline IrO ₂ (110) ultrathin films supported on RuO ₂ (110)/ Ru (0001) in an acidic environment. Physical Chemistry Chemical Physics, 2020, 22, 22956-22962.	1.3	2
22	Operando time- and space-resolved high-energy X-ray diffraction measurement to understand hydrogen-microstructure interactions in duplex stainless steel. Corrosion Science, 2020, 175, 108899.	3.0	10
23	High-Resolution X-ray Photoelectron Spectroscopy of an IrO ₂ (110) Film on Ir(100). Journal of Physical Chemistry Letters, 2020, 11, 7184-7189.	2.1	14
24	Catalytic Oxidation of CO on a Curved Pt(111) Surface: Simultaneous Ignition at All Facets through a Transient COâ€O Complex**. Angewandte Chemie - International Edition, 2020, 59, 20037-20043.	7.2	13
25	Catalytic Oxidation of CO on a Curved Pt(111) Surface: Simultaneous Ignition at All Facets through a Transient COâ€O Complex**. Angewandte Chemie, 2020, 132, 20212-20218.	1.6	1
26	Thermal Stability of Single-Crystalline IrO ₂ (110) Layers: Spectroscopic and Adsorption Studies. Journal of Physical Chemistry C, 2020, 124, 15324-15336.	1.5	22
27	Metastable precursor structures in hydrogen-infused super duplex stainless steel microstructure – An operando diffraction experiment. Corrosion Science, 2020, 176, 109021.	3.0	14
28	Extraordinary Stability of IrO ₂ (110) Ultrathin Films Supported on TiO ₂ (110) under Cathodic Polarization. Journal of Physical Chemistry Letters, 2020, 11, 9057-9062.	2.1	9
29	Ammonia Oxidation over a Pt ₂₅ Rh ₇₅ (001) Model Catalyst Surface: An Operando Study. Journal of Physical Chemistry C, 2020, 124, 22192-22199.	1.5	7
30	An electrochemical cell for 2-dimensional surface optical reflectance during anodization and cyclic voltammetry. Review of Scientific Instruments, 2020, 91, 044101.	0.6	17
31	Structure of two-dimensional Fe3O4. Journal of Chemical Physics, 2020, 152, 114705.	1.2	10
32	Lateral variation of the native passive film on super duplex stainless steel resolved by synchrotron hard X-ray photoelectron emission microscopy. Corrosion Science, 2020, 174, 108841.	3.0	22
33	CO Chemisorption on Vicinal Rh(111) Surfaces Studied with a Curved Crystal. Journal of Physical Chemistry C, 2020, 124, 9305-9313.	1.5	13
34	Surface optical reflectance combined with x-ray techniques during gas-surface interactions. Journal Physics D: Applied Physics, 2020, 53, 224001.	1.3	15
35	Electrochemical Fabrication and Characterization of Palladium Nanowires in Nanoporous Alumina Templates. Journal of the Electrochemical Society, 2020, 167, 122514.	1.3	11
36	Characterization of Native Oxide and Passive Film on Austenite/Ferrite Phases of Duplex Stainless Steel Using Synchrotron HAXPEEM. Journal of the Electrochemical Society, 2019, 166, C3336-C3340.	1.3	22

3

#	Article	IF	Citations
37	Temperature characterization of an operando flow reactor for heterogeneous catalysis. Journal Physics D: Applied Physics, 2019, 52, 324003.	1.3	10
38	Redefining passivity breakdown of super duplex stainless steel by electrochemical operando synchrotron near surface X-ray analyses. Npj Materials Degradation, 2019, 3, .	2.6	36
39	Potential-Induced Pitting Corrosion of an IrO ₂ (110)-RuO ₂ (110)/Ru(0001) Model Electrode under Oxygen Evolution Reaction Conditions. ACS Catalysis, 2019, 9, 6530-6539.	5.5	43
40	Combining Planar Laser-Induced Fluorescence with Stagnation Point Flows for Small Single-Crystal Model Catalysts: CO Oxidation on a Pd(100). Catalysts, 2019, 9, 484.	1.6	5
41	The State of Electrodeposited Sn Nanopillars within Porous Anodic Alumina from <i>in Situ</i> X-ray Observations. ACS Applied Nano Materials, 2019, 2, 3031-3038.	2.4	12
42	Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for <i> operando </i> catalyst surface characterization. Review of Scientific Instruments, 2019, 90, 033703.	0.6	20
43	Influence of Surface Strain on Passive Film Formation of Duplex Stainless Steel and Its Degradation in Corrosive Environment. Journal of the Electrochemical Society, 2019, 166, C3071-C3080.	1.3	17
44	Surface oxide development on aluminum alloy 6063 during heat treatment. Surface and Interface Analysis, 2019, 51, 1214-1224.	0.8	4
45	Structure dependent effect of silicon on the oxidation of Al(111) and Al(100). Surface Science, 2019, $684, 1-11$.	0.8	2
46	Observing growth under confinement: Sn nanopillars in porous alumina templates. Nanoscale Advances, 2019, 1, 4764-4771.	2.2	8
47	In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering. Nano Research, 2019, 12, 25-31.	5.8	9
48	Observation of Pore Growth and Self-Organization in Anodic Alumina by Time-Resolved X-ray Scattering. ACS Applied Nano Materials, 2018, 1, 1265-1271.	2.4	22
49	The Role of Oxides in Catalytic CO Oxidation over Rhodium and Palladium. ACS Catalysis, 2018, 8, 4438-4445.	5.5	69
50	Adsorption of NO on Fe3O4(111). Chemical Physics Letters, 2018, 693, 84-87.	1.2	21
51	Surface development of a brazing alloy during heat treatment–a comparison between UHV and APXPS. Journal of Physics Condensed Matter, 2018, 30, 024004.	0.7	2
52	Catalytic Oxidation of Carbon Monoxide on a Curved Pd Crystal: Spatial Variation of Active and Poisoning Phases in Stationary Conditions. Journal of the American Chemical Society, 2018, 140, 16245-16252.	6.6	24
53	Steps Control the Dissociation of CO ₂ on Cu(100). Journal of the American Chemical Society, 2018, 140, 12974-12979.	6.6	70
54	Self-organization of porous anodic alumina films studied <i>in situ</i> by grazing-incidence transmission small-angle X-ray scattering. RSC Advances, 2018, 8, 18980-18991.	1.7	17

#	Article	IF	CITATIONS
55	Understanding the Intrinsic Surface Reactivity of Single-Layer and Multilayer PdO(101) on Pd(100). ACS Catalysis, 2018, 8, 8553-8567.	5.5	38
56	In-situ synchrotron GIXRD study of passive film evolution on duplex stainless steel in corrosive environment. Corrosion Science, 2018, 141, 18-21.	3.0	32
57	Combining synchrotron light with laser technology in catalysis research. Journal of Synchrotron Radiation, 2018, 25, 1389-1394.	1.0	9
58	Turning Nano Porous Aluminium Black: An in Situ High-Energy X-Ray Diffraction and X-Ray Fluorescence Study. ECS Meeting Abstracts, 2018, , .	0.0	0
59	In-Situ X-Ray Observations of Sn Electrodeposition into Anodized Alumina. ECS Meeting Abstracts, 2018, , .	0.0	0
60	In-Situ Observations of Anodic Alumina Nanopore Growth and Self-Organisation. ECS Meeting Abstracts, 2018, , .	0.0	0
61	The influence of incommensurability on the long-range periodicity of the Pd(100)-(<mml:math) 0.784="" 1="" 1-8.<="" 2017,="" 660,="" etqq1="" science,="" surface="" td="" tj=""><td>1314 rgBT 0.8</td><td>/Overlock 10</td></mml:math)>	1314 rgBT 0.8	/Overlock 10
62	Integration of electrochemical and synchrotron-based X-ray techniques for in-situ investigation of aluminum anodization. Electrochimica Acta, 2017, 241, 299-308.	2.6	19
63	Surface-Sensitive X-ray Diffraction Across the Pressure Gap. Springer Series in Chemical Physics, 2017, , 59-87.	0.2	7
64	Planar Laser Induced Fluorescence Applied to Catalysis. Springer Series in Chemical Physics, 2017, , 131-149.	0.2	4
65	Co3O4(100) films grown on Ag(100): Structure and chemical properties. Surface Science, 2017, 657, 90-95.	0.8	10
66	Electronic Structure Changes Due to Crystal Phase Switching at the Atomic Scale Limit. ACS Nano, 2017, 11, 10519-10528.	7.3	15
67	Simultaneous Imaging of Gas Phase over and Surface Reflectance of a Pd(100) Single Crystal during CO Qxidation. Journal of Physical Chemistry G. 2017, 121, 2351173519 Structure of the 3 mml:math xmins:mml="http://www.w3.org/1998/Math/Math/MthML"	1.5	20
68	display="inline"> <mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>SnO</mml:mi></mml:mrow><mstretchy="false">(<mml:mn>110</mml:mn><mml:mo) 0="" 10="" 227="" 50="" etqq0="" overlock="" rgbt="" stretchy="false" td="" tf="" tj="">(<mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:< td=""><td>(stretchy= 2.9</td><td>="false">)26</td></mml:<></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo)></mstretchy="false"></mml:msub></mml:mrow></mml:mrow>	(stretchy= 2.9	="false">)26
69	Novel in Situ Techniques for Studies of Model Catalysts. Accounts of Chemical Research, 2017, 50, 2326-2333.	7.6	39
70	Anodization of Al(100), Al(111) and Al Alloy 6063 studied in situ with X-ray reflectivity and electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 2017, 799, 556-562.	1.9	21
71	Redox behavior of iron at the surface of an O(100) single crystal studied by ambient-pressure photoelectron spectroscopy. Journal of Lithic Studies, 2017, 3, 95-103.	0.1	8
72	A convenient setup for laser-induced fluorescence imaging of both CO and CO2 during catalytic CO oxidation. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	19

#	Article	IF	Citations
73	Fe Oxides on Ag Surfaces: Structure and Reactivity. Topics in Catalysis, 2017, 60, 492-502.	1.3	10
74	Strain Dependent Light-off Temperature in Catalysis Revealed by Planar Laser-Induced Fluorescence. ACS Catalysis, 2017, 7, 110-114.	5 . 5	36
75	Adsorption of hydrogen on stable and metastable Ir(100) surfaces. Surface Science, 2017, 656, 66-76.	0.8	9
76	Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface. Applied Sciences (Switzerland), 2017, 7, 1229.	1.3	1
77	Visualization of Gas Distribution in a Model AP-XPS Reactor by PLIF: CO Oxidation over a Pd(100) Catalyst. Catalysts, 2017, 7, 29.	1.6	23
78	High-energy x-ray diffraction from surfaces and nanoparticles. Physical Review B, 2017, 96, .	1.1	22
79	Tuning the Reactivity of Ultrathin Oxides: NO Adsorption on Monolayer FeO(111). Angewandte Chemie, $2016, 128, 9413-9417.$	1.6	2
80	Methanol Adsorption and Oxidation on Reduced and Oxidized TbO _{<i>x</i>} (111) Surfaces. Journal of Physical Chemistry C, 2016, 120, 28617-28629.	1.5	11
81	Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS. Materials Research Express, 2016, 3, 106506.	0.8	5
82	Comparison of AP-XPS and PLIF Measurements During CO Oxidation Over Pd Single Crystals. Topics in Catalysis, 2016, 59, 478-486.	1.3	21
83	Adsorption of NO on FeO _{<i>x</i>} Films Grown on Ag(111). Journal of Physical Chemistry C, 2016, 120, 9282-9291.	1.5	11
84	Oxidation of Fe(110) in oxygen gas at 400 °C. Surface Science, 2016, 644, 172-179.	0.8	10
85	Tuning the Reactivity of Ultrathin Oxides: NO Adsorption on Monolayer FeO(111). Angewandte Chemie - International Edition, 2016, 55, 9267-9271.	7.2	16
86	Step dynamics and oxide formation during CO oxidation over a vicinal Pd surface. Physical Chemistry Chemical Physics, 2016, 18, 20312-20320.	1.3	14
87	2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence. Journal of Physics Condensed Matter, 2016, 28, 453002.	0.7	30
88	Diatomic Steps in Pt(997) Surfaces Are Better Catalysts than Monatomic Steps for the CO Oxidation Reaction near Atmospheric Pressure. ACS Catalysis, 2016, 6, 1285-1291.	5.5	25
89	Laser Diagnostics for the Study of Heterogeneous Catalysis. , 2016, , .		0
90	Correlation between stoichiometry and surface structure of the polar MgAl ₂ O ₄ (100) surface as a function of annealing temperature. Physical Chemistry Chemical Physics, 2015, 17, 5795-5804.	1.3	9

#	Article	IF	Citations
91	X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal. Nature Communications, 2015, 6, 8903.	5.8	48
92	Real-Time Gas-Phase Imaging over a Pd(110) Catalyst during CO Oxidation by Means of Planar Laser-Induced Fluorescence. ACS Catalysis, 2015, 5, 2028-2034.	5 . 5	26
93	Growth of Ultrathin Iron Oxide Films on Ag(100). Journal of Physical Chemistry C, 2015, 119, 2572-2582.	1.5	32
94	Chemistry of Supported Palladium Nanoparticles during Methane Oxidation. ACS Catalysis, 2015, 5, 2481-2489.	5 . 5	98
95	Faceting of Rhodium(553) in Realistic Reaction Mixtures of Carbon Monoxide and Oxygen. Journal of Physical Chemistry C, 2015, 119, 11646-11652.	1.5	8
96	Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling. ACS Catalysis, 2015, 5, 4514-4518.	5 . 5	41
97	Transient Structures of PdO during CO Oxidation over Pd(100). Journal of Physical Chemistry C, 2015, 119, 15469-15476.	1.5	41
98	The thickness of native oxides on aluminum alloys and single crystals. Applied Surface Science, 2015, 349, 826-832.	3.1	174
99	Adsorption and Activation of CO on Co ₃ O ₄ (111) Thin Films. Journal of Physical Chemistry C, 2015, 119, 16688-16699.	1.5	72
100	A well-ordered surface oxide on Fe(110). Surface Science, 2015, 639, 13-19.	0.8	9
101	Manipulating the Dynamics of Self-Propelled Gallium Droplets by Gold Nanoparticles and Nanoscale Surface Morphology. ACS Nano, 2015, 9, 5422-5431.	7.3	13
102	Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth. ACS Applied Materials & Epitaxial Overgrowth. ACS Applied Materials & Epitaxial Overgrowth.	4.0	23
103	Surface morphology of Au-free grown nanowires after native oxide removal. Nanoscale, 2015, 7, 9998-10004.	2.8	12
104	Reversible Modification of the Structural and Electronic Properties of a Boron Nitride Monolayer by CO Intercalation. ChemPhysChem, 2015, 16, 923-927.	1.0	18
105	Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence. Nature Communications, 2015, 6, 7076.	5 . 8	41
106	Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing. Applied Physics B: Lasers and Optics, 2015, 121, 123-130.	1.1	3
107	Quantitative surface structure determination using in situ high-energy SXRD: Surface oxide formation on Pd(100) during catalytic CO oxidation. Surface Science, 2014, 630, 229-235.	0.8	32
108	A high pressure x-ray photoelectron spectroscopy study of CO oxidation over Rh(100). Journal of Physics Condensed Matter, 2014, 26, 055003.	0.7	9

#	Article	IF	CITATIONS
109	Effects of non-local exchange on core level shifts for gas-phase and adsorbed molecules. Journal of Chemical Physics, 2014, 141, 034706.	1.2	29
110	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ In situ $\mbox{\ensuremath{\mbox{\scriptsize (i)}}}$ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy. Journal of Applied Physics, 2014, 116, .	1.1	17
111	Electronic and Structural Differences between Wurtzite and Zinc Blende InAs Nanowire Surfaces: Experiment and Theory. ACS Nano, 2014, 8, 12346-12355.	7.3	78
112	High-Energy Surface X-ray Diffraction for Fast Surface Structure Determination. Science, 2014, 343, 758-761.	6.0	144
113	Reduction behavior of oxidized Pd(100) and Pd75Ag25(100) surfaces using CO. Surface Science, 2014, 621, 31-39.	0.8	19
114	CO Adsorption on Clean and Oxidized Pd(111). Journal of Physical Chemistry C, 2014, 118, 1118-1128.	1.5	69
115	Generation of surface steps on Pt(977) induced by the catalytic oxidation of CO. Journal of Catalysis, 2014, 309, 33-37.	3.1	15
116	Toward a Silverâ€"Alumina Model System for NO _{<i>x</i>} Reduction Catalysis. Journal of Physical Chemistry C, 2014, 118, 24556-24561.	1.5	3
117	A high pressure X-ray photoelectron spectroscopy study of oxidation and reduction of Rh(100) and Rh nanoparticles. Surface Science, 2014, 628, 153-158.	0.8	22
118	H2 reduction of surface oxides on Pd-based membrane model systems – The case of Pd(100) and Pd75Ag25(100). Applied Surface Science, 2014, 313, 794-803.	3.1	5
119	Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide Thin Films. ACS Catalysis, 2014, 4, 3330-3334.	5.5	79
120	High-Coverage Oxygen-Induced Surface Structures on Ag(111). Journal of Physical Chemistry C, 2014, 118, 15324-15331.	1.5	46
121	Direct Imaging of Atomic Scale Structure and Electronic Properties of GaAs Wurtzite and Zinc Blende Nanowire Surfaces. Nano Letters, 2013, 13, 4492-4498.	4.5	63
122	<i>InÂSitu</i> X-Ray Photoelectron Spectroscopy of Model Catalysts: At the Edge of the Gap. Physical Review Letters, 2013, 110, 117601.	2.9	107
123	Surface science of free standing semiconductor nanowires. Surface Science, 2013, 607, 97-105.	0.8	14
124	Facile NOx interconversion over preoxidized Ag(111). Surface Science, 2013, 617, 167-174.	0.8	5
125	Dissociative Adsorption of Hydrogen on PdO(101) Studied by HRCLS and DFT. Journal of Physical Chemistry C, 2013, 117, 13510-13519.	1.5	25
126	Generation and oxidation of aerosol deposited PdAg nanoparticles. Surface Science, 2013, 616, 186-191.	0.8	10

#	Article	IF	Citations
127	Interface characterization of metal-HfO2-lnAs gate stacks using hard x-ray photoemission spectroscopy. AIP Advances, 2013, 3, 072131.	0.6	O
128	The Rh(100)-(3 $ ilde{A}$ — 1)-2O structure. Journal of Physics Condensed Matter, 2012, 24, 225006.	0.7	5
129	Mechanism for reversed photoemission core-level shifts of oxidized Ag. Physical Review B, 2012, 85, .	1.1	34
130	Oxygen interaction with the $Pd(112)$ surface: From chemisorption to bulk oxide formation. Physical Review B, 2012, 86, .	1.1	16
131	Anin situset up for the detection of CO2from catalytic CO oxidation by using planar laser-induced fluorescence. Review of Scientific Instruments, 2012, 83, 053104.	0.6	35
132	Reversible formation of a PdCx phase in Pd nanoparticles upon CO and O2 exposure. Physical Chemistry Chemical Physics, 2012, 14, 4796.	1.3	47
133	One-Dimensional Corrugation of the $\langle i \rangle h \langle j \rangle$ -BN Monolayer on Fe(110). Langmuir, 2012, 28, 1775-1781.	1.6	66
134	Structure of the Rh2O3(0001) surface. Surface Science, 2012, 606, 1416-1421.	0.8	34
135	Surface composition of clean and oxidized Pd75Ag25(100) from photoelectron spectroscopy and density functional theory calculations. Surface Science, 2012, 606, 1777-1782.	0.8	34
136	Bulk and surface characterization of In <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> O <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> (001) single crystals. Physical Review B, 2012, 85, .	1.1	62
137	The Active Phase of Palladium during Methane Oxidation. Journal of Physical Chemistry Letters, 2012, 3, 678-682.	2.1	183
138	Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires. ACS Nano, 2012, 6, 9679-9689.	7.3	37
139	Oxygen-Stabilized Rh Adatoms: 0D Oxides on a Vicinal Surface. Journal of Physical Chemistry Letters, 2011, 2, 2747-2751.	2.1	5
140	Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111). Journal of Physical Chemistry C, 2011, 115, 9568-9577.	1.5	125
141	Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures. Physical Chemistry Chemical Physics, 2011, 13, 13167.	1.3	104
142	Cross-sectional scanning tunneling microscopy and spectroscopy of semimetallic ErAs nanostructures embedded in GaAs. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	8
143	High-resolution core-level spectroscopy study of the ultrathin aluminum oxide film on NiAl(110). Physical Review B, 2011, 83, .	1.1	19
144	Oxidation and reduction of Pd(100) and aerosol-deposited Pd nanoparticles. Physical Review B, 2011, 83, .	1.1	79

#	Article	IF	Citations
145	Local Density of States and Interface Effects in Semimetallic ErAs Nanoparticles Embedded in GaAs. Physical Review Letters, 2011, 107, 036806.	2.9	32
146	Carbonate formation on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi> p</mml:mi> <mml:mo> (</mml:mo> <mml:mn> 4</mml:mn> <mml:mo> \tilde{A}-Physical Review B, 2011, 84, .</mml:mo></mml:mrow></mml:math>	-< <i> </i> mml:m	o> 20 ml:mn>
147	Stable Cation inversion at the mml:math xmins:mml="http://www.w3.org/1998/Nath/Nath/Nath/Nic" display="inline"> <mml:msub><mml:mi>MgAl</mml:mi><mml:mn>2</mml:mn></mml:msub> <mml:msub><mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>100</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2.9</td><td>45 stretchy="fals</td></mml:mo)></mml:msub></mml:msub>	2.9	45 stretchy="fals
148	Surface structure and morphology of InAs(111)B with/without gold nanoparticles annealed under arsenic or atomic hydrogen flux. Surface Science, 2010, 604, 354-360.	0.8	21
149	In situ studies of the oxidation of HCl over RuO2 model catalysts: Stability and reactivity. Journal of Catalysis, 2010, 272, 169-175.	3.1	54
150	Faceting and surface reconstruction of the GaP(111)B surface. Surface and Interface Analysis, 2010, 42, 1524-1527.	0.8	2
151	Generation of Pd Model Catalyst Nanoparticles by Spark Discharge. Journal of Physical Chemistry C, 2010, 114, 9257-9263.	1.5	32
152	New Flexible Toolbox for Nanomechanical Measurements with Extreme Precision and at Very High Frequencies. Nano Letters, 2010, 10, 3893-3898.	4.5	8
153	Reply to "Comment on â€~Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditionsâ€â€™. Journal of Physical Chemistry C, 2010, 114, 22372-22373.	1.5	14
154	Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions. Journal of Physical Chemistry C, 2010, 114, 4580-4583.	1.5	88
155	Hydrogen-Promoted Chlorination of RuO ₂ (110). Journal of Physical Chemistry C, 2010, 114, 10901-10909.	1.5	25
156	Comment on "CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum― Journal of Physical Chemistry C, 2010, 114, 6875-6876.	1.5	54
157	Dynamic response of chlorine atoms on a RuO2(110) model catalyst surface. Physical Chemistry Chemical Physics, 2010, 12, 15358.	1.3	28
158	Lack of surface oxide layers and facile bulk oxide formation on Pd(110). Physical Review B, 2009, 80, .	1.1	41
159	Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains. Review of Scientific Instruments, 2009, 80, 123703.	0.6	73
160	Direct observation of atomic scale surface relaxation in ortho twin structures in GaAs by XSTM. Journal of Physics Condensed Matter, 2009, 21, 055404.	0.7	9
161	Direct comparison of the reactivity of the non-oxidic phase of Ru(0001) and the RuO2 phase in the CO oxidation reaction. Surface Science, 2009, 603, 298-303.	0.8	41
162	CO adsorption on Au(310) and Au(321): 6-Fold coordinated gold atoms. Surface Science, 2009, 603, 2152-2157.	0.8	61

#	Article	IF	CITATIONS
163	Reaction mechanism of ammonia oxidation over RuO2(110): A combined theory/experiment approach. Surface Science, 2009, 603, L113-L116.	0.8	21
164	In situ structure–activity correlation experiments of the ruthenium catalyzed CO oxidation reaction. Catalysis Today, 2009, 145, 236-242.	2.2	52
165	Structure and catalytic reactivity of Rh oxides. Catalysis Today, 2009, 145, 227-235.	2.2	71
166	Influence of Oxygen Vacancies on the Properties of Ceria-Supported Gold. Journal of Physical Chemistry C, 2009, 113, 724-728.	1.5	51
167	Ordering of the Nanoscale Step Morphology As a Mechanism for Droplet Self-Propulsion. Nano Letters, 2009, 9, 2710-2714.	4.5	66
168	Impact of Oxygen Coadsorption on Intercalation of Cobalt under the h-BN Nanomesh. Nano Letters, 2009, 9, 2780-2787.	4.5	30
169	Step enhanced dehydrogenation of ethanol on Rh. Surface Science, 2008, 602, 3057-3063.	0.8	23
170	Stable Deacon Process for HCl Oxidation over RuO ₂ . Angewandte Chemie - International Edition, 2008, 47, 2131-2134.	7.2	123
171	A single h-BN layer on Pt(111). Surface Science, 2008, 602, 1722-1726.	0.8	94
172	Stressing Pd atoms: Initial oxidation of the Pd(110) surface. Surface Science, 2008, 602, 2440-2447.	0.8	31
173	CO Adsorption on a Au/CeO ₂ (111) Model Catalyst. Journal of Physical Chemistry C, 2008, 112, 6900-6906.	1.5	58
174	X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces. Applied Physics Letters, 2008, 92, .	1.5	84
175	Reaction Mechanism of the Oxidation of HCl over RuO $<$ sub $>2<$ /sub $>(110)$. Journal of Physical Chemistry C, 2008, 112, 9966-9969.	1.5	68
176	Direct Atomic Scale Imaging of IIIâ^'V Nanowire Surfaces. Nano Letters, 2008, 8, 3978-3982.	4.5	59
177	Structure and reactivity of a model catalyst alloy under realistic conditions. Journal of Physics Condensed Matter, 2008, 20, 184018.	0.7	47
178	Density functional theory with hybrid functionals applied to defects in GaAs surfaces: Effect of doping. Physical Review B, 2008, 78, .	1.1	3
179	Sensitivity of catalysis to surface structure: The example of CO oxidation on Rh under realistic conditions. Physical Review B, 2008, 78, .	1.1	86
180	Step-Orientation-Dependent Oxidation: From 1D to 2D Oxides. Physical Review Letters, 2008, 101, 266104.	2.9	49

#	Article	IF	Citations
181	<i>In situ</i> gas–surface interactions: approaching realistic conditions. Journal of Physics Condensed Matter, 2008, 20, 180302.	0.7	14
182	<i>In Situ</i> Investigations of Chemical Reactions on Surfaces by X-Ray Diffraction at Atomospheric Pressures. MRS Bulletin, 2007, 32, 1010-1014.	1.7	34
183	Real time observation of ultrathin epitaxial oxide growth during alloy oxidation. New Journal of Physics, 2007, 9, 331-331.	1.2	9
184	Correlation lengths in stacked InAs quantum dot systems studied by cross-sectional scanning tunnelling microscopy. Nanotechnology, 2007, 18, 145403.	1.3	6
185	Detection of spin-states in Mn-doped gallium arsenide films. Nanotechnology, 2007, 18, 044006.	1.3	1
186	Influence of chemical interaction at the lattice-mismatchedhâ^BNâ^Rh(111)andhâ^BNâ^Pt(111)interfaces on the overlayer morphology. Physical Review B, 2007, 75, .	1.1	139
187	Oxidation of Pd(553): From ultrahigh vacuum to atmospheric pressure. Physical Review B, 2007, 76, .	1.1	70
188	GaAs/AlGaAs Nanowire Heterostructures Studied by Scanning Tunneling Microscopy. Nano Letters, 2007, 7, 2859-2864.	4.5	53
189	Complex Interaction of Hydrogen with the RuO2(110) Surface. Journal of Physical Chemistry C, 2007, 111, 5363-5373.	1.5	88
190	Growth and Reactivity of Titanium Oxide Ultrathin Films on Ni(110). Journal of Physical Chemistry C, 2007, $111,7704-7710$.	1.5	33
191	Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self-Assembled Organic Coatings. Advanced Materials, 2007, 19, 1801-1806.	11.1	89
192	The surface oxide: A LEED, DFT and STM study. Surface Science, 2007, 601, 1574-1581.	0.8	96
193	Nanowire growth and dopants studied by cross-sectional scanning tunnelling microscopy. Nanotechnology, 2006, 17, S362-S368.	1.3	19
194	Structure of Ag(111) â^p(4×4) â^'O: No Silver Oxide. Physical Review Letters, 2006, 96, 146102.	2.9	141
195	Unusual Process of Water Formation on RuO2(110) by Hydrogen Exposure at Room Temperature. Journal of Physical Chemistry B, 2006, 110, 14007-14010.	1.2	35
196	Kinetics of the Reduction of the Rh(111) Surface Oxide:Â Linking Spectroscopy and Atomic-Scale Information. Journal of Physical Chemistry B, 2006, 110, 9966-9975.	1.2	27
197	Acetate formation during the ethanol oxidation on Rh(111). Surface Science, 2006, 600, 5136-5141.	0.8	14
198	Improving InAs nanotree growth with composition-controlled Au–In nanoparticles. Nanotechnology, 2006, 17, 1344-1350.	1.3	35

#	Article	IF	Citations
199	Surface oxides on close-packed surfaces of late transition metals. Journal of Physics Condensed Matter, 2006, 18, R481-R499.	0.7	107
200	Oxygen-induced step bunching and faceting of Rh(553): Experiment and ab initiocal culations. Physical Review B, 2006, 74, .	1.1	71
201	Au wetting and nanoparticle stability on GaAs(111)B. Applied Physics Letters, 2006, 89, 251912.	1.5	20
202	Cross-sectional scanning tunneling microscopy studies of novel Ill–V semiconductor structures. Progress in Surface Science, 2005, 80, 1-25.	3.8	22
203	The surface oxide as a source of oxygen on Rh(1 1 1). Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 367-372.	0.8	62
204	One-DimensionalPtO2at Pt Steps: Formation and Reaction with CO. Physical Review Letters, 2005, 95, 256102.	2.9	131
205	Density of Configurational States from First-Principles Calculations: The Phase Diagram of Al-Na Surface Alloys. ChemPhysChem, 2005, 6, 1923-1928.	1.0	20
206	Understanding the Structural Deactivation of Ruthenium Catalysts on an Atomic Scale under both Oxidizing and Reducing Conditions. Angewandte Chemie - International Edition, 2005, 44, 917-920.	7.2	91
207	A surface x-ray study of the structure and morphology of the oxidized Pd(001) surface. Journal of Chemical Physics, 2005, 122, 044706.	1.2	48
208	Structure of a thin oxide film on Rh(100). Physical Review B, 2005, 71, .	1.1	101
209	The influence of lysine on InP(001) surface ordering and nanowire growth. Nanotechnology, 2005, 16, 2354-2359.	1.3	32
210	Ru(0001) Model Catalyst under Oxidizing and Reducing Reaction Conditions:Â In-Situ High-Pressure Surface X-ray Diffraction Study. Journal of Physical Chemistry B, 2005, 109, 21825-21830.	1.2	89
211	Kinetic Hindrance during the Initial Oxidation of Pd(100) at Ambient Pressures. Physical Review Letters, 2004, 92, 046101.	2.9	209
212	High-Coverage Oxygen Structures on Rh(111): Adsorbate Repulsion and Site Preference Is Not Enough. Physical Review Letters, 2004, 93, 266103.	2.9	46
213	Defect structure of Galâ^xMnxAs: A cross-sectional scanning tunneling microscopy study. Physical Review B, 2004, 70, .	1.1	20
214	Structure of the cobalt-filled missing-row reconstruction of $Pt(110)$. Physical Review B, 2004, 70, .	1.1	3
215	Mn diffusion in Ga1â^'xMnxAsâ^•GaAs superlattices. Applied Physics Letters, 2004, 85, 4660-4662.	1.5	7
216	Stacked InAs quantum dots in InP studied by cross-sectional scanning tunnelling microscopy. Nanotechnology, 2004, 15, 1701-1707.	1.3	15

#	Article	IF	CITATIONS
217	Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. Nature Materials, 2004, 3, 519-523.	13.3	79
218	A study of the surface structure and composition of annealed Ga0.96Mn0.04As(1 0 0). Applied Surface Science, 2004, 222, 23-32.	3.1	4
219	Visualization of Atomic Processes on Ruthenium Dioxide using Scanning Tunneling Microscopy. ChemPhysChem, 2004, 5, 167-174.	1.0	67
220	Co on Mo(110) studied by scanning tunneling microscopy. Surface Science, 2004, 557, 109-118.	0.8	17
221	Self-Limited Growth of a Thin Oxide Layer on Rh(111). Physical Review Letters, 2004, 92, 126102.	2.9	198
222	Complex surface reconstructions solved by ab initio molecular dynamics. Applied Physics A: Materials Science and Processing, 2003, 76, 701-710.	1.1	23
223	Surface core level shift observed on NiAl(1 1 0). Surface Science, 2003, 529, L263-L268.	0.8	16
224	The Pd()–R27°-O surface oxide revisited. Surface Science, 2003, 541, 101-112.	0.8	201
225	Spontaneous InAs quantum dot nucleation at strained InP/GalnAs interfaces. Applied Physics Letters, 2003, 83, 4830-4832.	1.5	7
226	Identification of Step Atoms by High Resolution Core Level Spectroscopy. Physical Review Letters, 2003, 91, 056102.	2.9	33
227	Slowing down adatom diffusion by an adsorbate: Co on Pt(111) with and without preadsorbed CO. Physical Review B, 2003, 68, .	1.1	4
228	Geometry of the Valence Transition Induced Surface Reconstruction of Sm(0001). Physical Review Letters, 2002, 88, 136102.	2.9	23
229	Two-Dimensional Oxide on Pd(111). Physical Review Letters, 2002, 88, 246103.	2.9	267
230	Magnetic anisotropy of ultrathin cobalt films on Pt(111) investigated with x-ray diffraction:â€∫Effect of atomic mixing at the interface. Physical Review B, 2002, 65, .	1.1	38
231	A misfit structure in the Co/Pt() system studied by scanning tunnelling microscopy and embedded atom method calculations. Surface Science, 2002, 498, 257-265.	0.8	15
232	On the origin of the Ru-3d5/2 satellite feature from RuO2(). Surface Science, 2002, 504, L196-L200.	0.8	72
233	Structure and formation of the Al()-R27°-Na phase: a LEED, DFT and HRCLS study. Surface Science, 2002, 515, 267-280.	0.8	4
234	Experimental and simulated STM images of stoichiometric and partially reduced RuO2() surfaces including adsorbates. Surface Science, 2002, 515, 143-156.	0.8	67

#	Article	IF	CITATIONS
235	Segregation and ordering at Fe1ⰒxAlx(100) surfaces – a model case for binary alloys. Surface Science, 2001, 474, 81-97.	0.8	26
236	The interaction of gas molecules at atmospheric pressures with surfaces investigated with surface X-ray diffraction. Surface Science, 2001, 482-485, 101-106.	0.8	7
237	Oxygen-induced surface phase transformation of Pd(1 1 1): sticking, adsorption and desorption kinetics. Surface Science, 2001, 482-485, 237-242.	0.8	60
238	Adatom interlayer diffusion on Pt(111): an embedded atom method study. Surface Science, 2001, 490, 29-42.	0.8	13
239	CO dissociation on Mo(110) studied by high-resolution core-level spectroscopy. Surface Science, 2001, 492, 185-194.	0.8	25
240	Direct Imaging of Catalytically Important Processes in the Oxidation of CO over RuO2(110). Journal of the American Chemical Society, 2001, 123, 11807-11808.	6.6	59
241	Exchange processes in interlayer diffusion $\hat{a}\in$ kinks, corners and the growth mode. Applied Physics A: Materials Science and Processing, 2001, 72, 405-412.	1.1	10
242	Ultrathin Films of Co on Pt(111): an STM View. Physica Status Solidi A, 2001, 187, 97-112.	1.7	20
243	Spectroscopic characterization of catalytically active surface sites of a metallic oxide. Chemical Physics Letters, 2001, 342, 467-472.	1.2	61
244	Adsorption Sites and Ligand Effect for CO on an Alloy Surface: A Direct View. Physical Review Letters, 2001, 87, 036103.	2.9	129
245	ON THE ROLE OF KINKS AND STRAIN IN HETEROEPITAXIAL GROWTH: AN STM STUDY. Surface Review and Letters, 2000, 07, 673-677.	0.5	0
246	Thin films of Co on Pt(111): Strain relaxation and growth. Physical Review B, 2000, 62, 2843-2851.	1.1	103
247	Surface and subsurface alloy formation of vanadium on Pd(111). Surface Science, 2000, 463, 199-210.	0.8	45
248	Effect of a surfactant in homoepitaxial growth of Ag (001): dendritic versus faceted island morphologies. Surface Science, 2000, 464, 165-175.	0.8	11
249	Interaction of H2, CO and O2 with a vanadium (111) surface. Surface Science, 2000, 447, 245-258.	0.8	35
250	Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface. Science, 2000, 287, 1474-1476.	6.0	829
251	Interlayer Diffusion of Adatoms: A Scanning-Tunneling Microscopy Study. Physical Review Letters, 1999, 82, 5068-5071.	2.9	33
252	Magnetization of Pt in the Co/Pt(110) system investigated with surface x-ray magnetic diffraction: Evidence for in-plane magnetic anisotropy. Physical Review B, 1999, 60, 10193-10198.	1.1	7

#	Article	IF	CITATIONS
253	Co/Pt(110) interface: An x-ray-diffraction study. Physical Review B, 1999, 59, 2431-2435.	1.1	10
254	Surface x-ray-diffraction study of the Rh(111)+ $(2\tilde{A}-2)\hat{a}^3$ 3CO structure. Physical Review B, 1999, 59, 5876-5880.	1.1	35
255	An ultrathin buried Si layer in GaAs studied by soft X-ray emission spectroscopy and surface X-ray diffraction: theory and experiment. Journal of Alloys and Compounds, 1999, 286, 31-36.	2.8	5
256	An atomic-scale study of the Co induced dendrite formation on Pt(111). Surface Science, 1999, 423, 357-363.	0.8	35
257	Measurement of the magnetism of a single atomic plane with X-ray diffraction. Physica B: Condensed Matter, 1998, 248, 9-13.	1.3	5
258	Coverage- and temperature-dependent site occupancy of carbon monoxide on Rh(111) studied by high-resolution core-level photoemission. Surface Science, 1998, 396, 117-136.	0.8	84
259	Determination of scaling exponents in Ag(100) homoepitaxy with x-ray diffraction profiles. Physical Review B, 1998, 57, 6325-6328.	1.1	28
260	Unified behavior of alkali core-level binding-energy shifts induced byspmetals. Physical Review B, 1997, 56, 12560-12565.	1.1	2
261	Na and K on Al(100) studied by low-energy electron diffraction and high-resolution core-level spectroscopy. Surface Science, 1997, 370, 311-323.	0.8	16
262	On the adsorption sites for CO on the Rh(111) single crystal surface. Surface Science, 1997, 371, 381-389.	0.8	94
263	Surface x-ray diffraction fromCo/Pt(111)ultrathin films and alloys: Structure and magnetism. Physical Review B, 1997, 56, 9848-9857.	1.1	101
264	THE SURFACE STRUCTURES OF Pd(100)-(1×1) AND c(2×2)-K. Surface Review and Letters, 1996, 03, 1339-134	13 0.5	21
265	A photoelectron spectroscopy and x-ray absorption study of single crystal with adsorbed Cs: on the origin of the states affected by electron doping and evidence for spatially resolved electron doping. Journal of Physics Condensed Matter, 1996, 8, 1307-1320.	0.7	9
266	Alkali core level binding energy shifts from buried interfaces between alkali films and metallic substrates with different surface index. Vacuum, 1995, 46, 1159-1163.	1.6	4
267	Core level binding energy shifts in interfaces between 4d and alkali metals. Journal of Electron Spectroscopy and Related Phenomena, 1995, 75, 225-232.	0.8	7
268	Core-level satellite excitations of K/Al(100) and K/Al(111). Physical Review B, 1995, 52, 12366-12371.	1.1	10
269	Formation and Structural Analysis of a Surface Alloy: Al(111)-(2 \tilde{A} — 2)-Na. Physical Review Letters, 1995, 74, 1617-1620.	2.9	51
270	Resonant valence-band and Cu 3pphotoemission at the CuL3threshold ofBi2Sr2CuO6andBi2Sr2CaCu2O8. Physical Review B, 1995, 51, 410-416.	1.1	11

#	Article	IF	Citations
271	On the temperature induced transformation between the two Al(111) \hat{a} '(\hat{a} 's \tilde{A} — \hat{a} 's \tilde{a})R30 \hat{A} ° \hat{a} 'Rb structures. Surface Science, 1995, 343, 37-43.	0.8	8
272	Structure of Al(111)-(â^š3 × â^š3)R30°-Na: A LEED study. Physical Review B, 1994, 50, 4718-4724.	1.1	70
273	Core-level shifts on Be(101Â ⁻ 0). Physical Review B, 1994, 49, 17460-17463.	1.1	17
274	Enhanced surface vibrations and reconstruction of the $Al(111)$ surface induced by Rb adsorption. Physical Review Letters, 1994, 72, 3370-3373.	2.9	62
275	Alkali core-level binding-energy shifts in alkali/4d-metal interface systems. Physical Review B, 1994, 50, 4711-4717.	1.1	16
276	Surface core-level shifts of some 4d-metal single-crystal surfaces: Experiments and abinitiocal culations. Physical Review B, 1994, 50, 17525-17533.	1.1	201
277	Differences in the Cs 4d and 5p surface and interface core-level shifts. Chemical Physics Letters, 1994, 226, 106-110.	1.2	2
278	Surface core level shift on Be(112ì,,0). Surface Science, 1994, 321, L219-L224.	0.8	10
279	Alkali-alkali interactions on Al(111): segregation and islanding in Na-Rb mixtures. Surface Science, 1994, 316, 303-308.	0.8	2
280	Polarisation-dependent X-ray absorption in high- and low-Tc Bi2Sr2Canâ^'1CunO4+2n superconductors. Physica C: Superconductivity and Its Applications, 1993, 214, 119-126.	0.6	17
281	Alkali metal adsorption on Al(111). Surface Science, 1993, 289, 307-334.	0.8	111
282	Layer dependent core level binding energy shifts: Na, K, Rb and Cs on Al(111). Surface Science, 1993, 281, 83-90.	0.8	32
283	Surface core-level shift of the Mo(110) surface. Physical Review B, 1993, 48, 5525-5529.	1.1	28
284	Three surface-shifted core levels on Be(0001). Physical Review Letters, 1993, 71, 2453-2456.	2.9	70
285	Observation of a low-binding-energy peak in the 2pcore-level photoemission from oxidized Al(111). Physical Review B, 1993, 47, 13063-13066.	1.1	45
286	X-ray-absorption and resonant-photoemission study of Ca in the high-temperature superconductorBi2Sr2CaCu2O8. Physical Review B, 1992, 46, 14126-14133.	1.1	9
287	Intermixing in the Na on Al(111) system. Physical Review Letters, 1992, 68, 94-97.	2.9	118
288	Changes in the local surface geometry with conserved adsorbate coverage and long-range order caused by annealing. Physical Review B, 1992, 46, 12784-12787.	1.1	54

#	Article	IF	CITATIONS
289	Oxidation of a Platinum–Tin Alloy Surface during Catalytic CO Oxidation. Journal of Physical Chemistry C, 0, , .	1.5	4