Marc S Robillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162638/publications.pdf

Version: 2024-02-01

29 papers 2,656 citations

304743 22 h-index 434195 31 g-index

32 all docs 32 docs citations

times ranked

32

2054 citing authors

#	Article	IF	CITATIONS
1	Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted <i>In Vivo</i> Chemistry. ACS Pharmacology and Translational Science, 2021, 4, 824-833.	4.9	45
2	Bioorthogonal chemistry. Nature Reviews Methods Primers, 2021, 1, .	21.2	201
3	<i>Trans</i> -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano, 2020, 14, 568-584.	14.6	50
4	Bioorthogonal Tetrazine Carbamate Cleavage by Highly Reactive <i>trans</i> -Cyclooctene. Journal of the American Chemical Society, 2020, 142, 10955-10963.	13.7	58
5	Fluorogenic Bifunctional trans â€Cyclooctenes as Efficient Tools for Investigating Clickâ€toâ€Release Kinetics. Chemistry - A European Journal, 2020, 26, 9900-9904.	3. 3	7
6	Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules, 2020, 25, 463.	3.8	21
7	Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging. EJNMMI Research, 2019, 9, 49.	2.5	24
8	Tetrazineâ€" <i>trans</i> -Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for <i>in Vivo</i> Dual Mode Imaging. Bioconjugate Chemistry, 2019, 30, 547-551.	3.6	9
9	Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nature Communications, 2018, 9, 1484.	12.8	175
10	Clickâ€toâ€Release from trans â€Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angewandte Chemie, 2018, 130, 10654-10659.	2.0	17
11	Chemical Control over T-Cell Activation <i>in Vivo</i> Using Deprotection of <i>trans</i> -Cyclooctene-Modified Epitopes. ACS Chemical Biology, 2018, 13, 1569-1576.	3.4	29
12	Clickâ€toâ€Release from <i>trans</i> â€Cyclooctenes: Mechanistic Insights and Expansion of Scope from Established Carbamate to Remarkable Ether Cleavage. Angewandte Chemie - International Edition, 2018, 57, 10494-10499.	13.8	83
13	DOTA-tetrazine probes with modified linkers for tumor pretargeting. Nuclear Medicine and Biology, 2017, 55, 19-26.	0.6	33
14	Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using \hat{l}_{\pm} -Particle Radiation. Bioconjugate Chemistry, 2017, 28, 3007-3015.	3.6	26
15	Triggered Drug Release from an Antibody–Drug Conjugate Using Fast "Click-to-Release―Chemistry in Mice. Bioconjugate Chemistry, 2016, 27, 1697-1706.	3.6	169
16	Development of Radiolabeled Membrane Type-1 Matrix Metalloproteinase Activatable Cell Penetrating Peptide Imaging Probes. Molecules, 2015, 20, 12076-12092.	3.8	12
17	Diabody Pretargeting with Click Chemistry In Vivo. Journal of Nuclear Medicine, 2015, 56, 1422-1428.	5.0	64
18	<i>In vivo</i> biodistribution of radiolabeled MMPâ€2/9 activatable cellâ€penetrating peptide probes in tumorâ€bearing mice. Contrast Media and Molecular Imaging, 2015, 10, 59-66.	0.8	14

#	Article	IF	CITATIONS
19	Editorial overview: In vivo chemistry: Pushing the envelope. Current Opinion in Chemical Biology, 2014, 21, v-vii.	6.1	5
20	Imaging of MMP Activity in Postischemic Cardiac Remodeling Using Radiolabeled MMP-2/9 Activatable Peptide Probes. Molecular Pharmaceutics, 2014, 11, 1415-1423.	4.6	26
21	Pretargeted imaging using bioorthogonal chemistry in mice. Current Opinion in Chemical Biology, 2014, 21, 161-169.	6.1	96
22	<i>Trans</i> -Cyclooctene Tag with Improved Properties for Tumor Pretargeting with the Diels–Alder Reaction. Molecular Pharmaceutics, 2014, 11, 3090-3096.	4.6	93
23	Click to Release: Instantaneous Doxorubicin Elimination upon Tetrazine Ligation. Angewandte Chemie - International Edition, 2013, 52, 14112-14116.	13.8	319
24	Highly Reactive <i>trans</i> -Cyclooctene Tags with Improved Stability for Diels–Alder Chemistry in Living Systems. Bioconjugate Chemistry, 2013, 24, 1210-1217.	3.6	218
25	Diels–Alder Reaction for Tumor Pretargeting: In Vivo Chemistry Can Boost Tumor Radiation Dose Compared with Directly Labeled Antibody. Journal of Nuclear Medicine, 2013, 54, 1989-1995.	5.0	147
26	Tumor Targeting of MMP-2/9 Activatable Cell-Penetrating Imaging Probes Is Caused by Tumor-Independent Activation. Journal of Nuclear Medicine, 2011, 52, 279-286.	5.0	88
27	Synthesis of Phosphine and Antibody–Azide Probes for <i>iin Vivo</i> Staudinger Ligation in a Pretargeted Imaging and Therapy Approach. Bioconjugate Chemistry, 2011, 22, 2072-2081.	3.6	53
28	Inâ€Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice. Angewandte Chemie - International Edition, 2010, 49, 3375-3378.	13.8	427
29	A Doxorubicin Prodrug Activated by the Staudinger Reaction. Bioconjugate Chemistry, 2008, 19, 714-718.	3.6	62