Patricia Isabel Figueiredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4162229/publications.pdf

Version: 2024-02-01

39 papers 2,374 citations

279701 23 h-index 377752 34 g-index

42 all docs 42 docs citations

42 times ranked 3108 citing authors

#	Article	IF	Citations
1	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	8.6	23
2	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak″mmunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	11.1	25
3	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	11.1	O
4	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	4.1	72
5	Intracellular Delivery of Budesonide and Polydopamine Coâ€Loaded in Endosomolytic Poly(butyl) Tj ETQq1 1 0.784 from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.		/Overlock 1 13
6	Requirements for Animal Experiments: Problems and Challenges. Small, 2021, 17, e2004182.	5.2	33
7	Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomaterialia, 2021, 121, 566-578.	4.1	59
8	A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration. Advanced Healthcare Materials, 2021, 10, e2001122.	3.9	142
9	Introduction to lignocellulosic materials. , 2021, , 1-34.		1
10	Requirements and properties of biomaterials for biomedical applications., 2021,, 195-226.		0
11	Antiâ€Bacterial Hydrogels: A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration (Adv. Healthcare Mater. 3/2021). Advanced Healthcare Materials, 2021, 10, 2170009.	3.9	4
12	LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. International Journal of Pharmaceutics, 2021, 597, 120346.	2.6	45
13	Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Lignins: A Comparison Study. ChemSusChem, 2021, 14, 4718-4730.	3.6	32
14	Dualâ€Crosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	11.1	73
15	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	2.8	42
16	Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lignin nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 770-783.	2.1	32
17	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44554-44562.	4.0	17
18	New insights into ethionamide metabolism: influence of oxidized methionine on its degradation path. RSC Medicinal Chemistry, 2020, 11, 1423-1428.	1.7	0

#	Article	IF	CITATIONS
19	All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomaterials Science, 2020, 8, 3270-3277.	2.6	28
20	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	6.4	16
21	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	18.7	261
22	Antimicrobial Colloidal Silver–Lignin Particles via Ion and Solvent Exchange. ACS Sustainable Chemistry and Engineering, 2019, 7, 15297-15303.	3.2	24
23	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	7.8	43
24	Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. International Journal of Pharmaceutics, 2019, 572, 118764.	2.6	13
25	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427.	5.2	57
26	Advanced Nanovaccines for Immunotherapy Applications: From Concept to Animal Tests. , 2019, , 231-260.		1
27	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq1 1 0.784.	3 1⁄4 8rgBT /	Overlock 10
28	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	6.4	46
29	Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	4.6	32
30	Production of pure drug nanocrystals and nano co-crystals by confinement methods. Advanced Drug Delivery Reviews, 2018, 131, 3-21.	6.6	115
31	Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 2018, 93, 233-269.	16.0	526
32	Mesoporous Silica Nanoparticles for Targeted and Stimuliâ€Responsive Delivery of Chemotherapeutics: A Review. Advanced Biology, 2018, 2, 1800020.	3.0	82
33	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine., 2018,, 1-31.		8
34	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	5.7	296
35	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	1.0	11
36	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	1.7	96

#	Article	IF	CITATIONS
37	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	7.8	61
38	Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. International Journal of Pharmaceutics, 2016, 511, 794-803.	2.6	42
39	Multinuclear NMR analysis of the antitubercular drug ethionamide. Journal of Molecular Structure, 2016, 1105, 286-292.	1.8	1