Laura M Wingler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4161812/publications.pdf

Version: 2024-02-01

25 papers 2,366 citations

394421 19 h-index 610901 24 g-index

26 all docs

26 docs citations

26 times ranked

2930 citing authors

#	Article	IF	CITATIONS
1	Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nature Chemical Biology, 2021, 17, 1057-1064.	8.0	59
2	Synthetic nanobodies as angiotensin receptor blockers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20284-20291.	7.1	35
3	β-Arrestin–Biased Angiotensin II Receptor Agonists for COVID-19. Circulation, 2020, 142, 318-320.	1.6	19
4	Conformational Basis of G Protein-Coupled Receptor Signaling Versatility. Trends in Cell Biology, 2020, 30, 736-747.	7.9	147
5	Molecular Mechanism of Biased Signaling in a Prototypical G-protein-coupled Receptor. Biophysical Journal, 2020, 118, 162a.	0.5	4
6	Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science, 2020, 367, 888-892.	12.6	150
7	Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science, 2020, 367, 881-887.	12.6	168
8	Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature, 2020, 579, 297-302.	27.8	238
9	Detergent- and phospholipid-based reconstitution systems have differential effects on constitutive activity of G-protein–coupled receptors. Journal of Biological Chemistry, 2019, 294, 13218-13223.	3.4	38
10	Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations. Cell, 2019, 176, 468-478.e11.	28.9	194
11	Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell, 2019, 176, 479-490.e12.	28.9	143
12	Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in \hat{I}^2 -arrestin coupling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3834-3839.	7.1	57
13	Small-Molecule Positive Allosteric Modulators of the <i>\hat{l}^2</i> ₂ -Adrenoceptor Isolated from DNA-Encoded Libraries. Molecular Pharmacology, 2018, 94, 850-861.	2.3	66
14	G protein–coupled receptor kinases (GRKs) orchestrate biased agonism at the β ₂ -adrenergic receptor. Science Signaling, 2018, 11, .	3.6	47
15	Allosteric "beta-blocker―isolated from a DNA-encoded small molecule library. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1708-1713.	7.1	118
16	Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling. Cell, 2017, 169, 338-349.e11.	28.9	221
17	Conformationally selective RNA aptamers allosterically modulate the \hat{l}^2 2-adrenoceptor. Nature Chemical Biology, 2016, 12, 709-716.	8.0	65
18	Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature, 2016, 535, 448-452.	27.8	290

#	Article	IF	CITATION
19	Regulation of $\langle i \rangle \hat{l}^2 \langle j i \rangle \langle sub \rangle 2 \langle j sub \rangle$ -Adrenergic Receptor Function by Conformationally Selective Single-Domain Intrabodies. Molecular Pharmacology, 2014, 85, 472-481.	2.3	121
20	Discovery of \hat{l}^22 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	2.8	65
21	Gene Assembly and Combinatorial Libraries in S. cerevisiae via Reiterative Recombination. Methods in Molecular Biology, 2013, 978, 187-203.	0.9	5
22	Transcriptional regulation improves the throughput of threeâ€hybrid counter selections in ⟨i⟩Saccharomyces cerevisiae⟨/i⟩. Biotechnology Journal, 2013, 8, 1485-1491.	3.5	4
23	Targeting β-arrestin2 Enhances Survival in a Murine Model of Chronic Myeloid Leukemia. Blood, 2013, 122, 857-857.	1.4	0
24	A Library Approach for the Discovery of Customized Yeast Threeâ∈Hybrid Counter Selections. ChemBioChem, 2011, 12, 715-717.	2.6	4
25	Reiterative Recombination for the in vivo assembly of libraries of multigene pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15135-15140.	7.1	96