Jonathan K Pokorski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/416156/publications.pdf

Version: 2024-02-01

78 papers 3,391 citations

30 h-index 56 g-index

79 all docs

79 docs citations

79 times ranked 5121 citing authors

#	Article	IF	CITATIONS
1	Dissolving Microneedle Delivery of a Prophylactic HPV Vaccine. Biomacromolecules, 2022, 23, 903-912.	5.4	23
2	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	48.7	65
3	Coagulation Bathâ€Assisted 3D Printing of PEDOT:PSS with High Resolution and Strong Substrate Adhesion for Bioelectronic Devices. Advanced Materials Technologies, 2022, 7, .	5.8	13
4	High-Throughput Manufacturing of Antibacterial Nanofibers by Melt Coextrusion and Post-Processing Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Polymer Materials, 2022, 4, 260-269.	4.4	3
5	A Singleâ€Dose, Implantâ€Based, Trivalent Virusâ€like Particle Vaccine against "Cholesterol Checkpoint― Proteins. Advanced Therapeutics, 2021, 4, 2100014.	3.2	23
6	Polymer Chemistry for Haptics, Soft Robotics, and Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008375.	14.9	14
7	Hot melt extrusion: An emerging manufacturing method for slow and sustained protein delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1712.	6.1	19
8	Modified Cyclodextrin Microparticles to Improve PMMA Drug Delivery Without Mechanical Loss. Macromolecular Bioscience, 2021, 21, e2000328.	4.1	7
9	Strong, Ductile MOF–Poly(urethane urea) Composites. Chemistry of Materials, 2021, 33, 3164-3171.	6.7	25
10	Confinement and Composition Effects on the Degradation Profile of Extruded PLA/PCL Nonwoven Fiber Blends. ACS Applied Polymer Materials, 2021, 3, 3878-3890.	4.4	7
11	Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. Journal of the American Chemical Society, 2021, 143, 14748-14765.	13.7	48
12	A Scalable Manufacturing Approach to Single Dose Vaccination against HPV. Vaccines, 2021, 9, 66.	4.4	20
13	Tobacco mosaic virus for the targeted delivery of drugs to cells expressing prostate-specific membrane antigen. RSC Advances, 2021, 11, 20101-20108.	3.6	8
14	Bio-Based Flame Retardation of Acrylonitrile–Butadiene–Styrene. ACS Applied Polymer Materials, 2021, 3, 372-388.	4.4	12
15	Cowpea Mosaic Virus Nanoparticle Vaccine Candidates Displaying Peptide Epitopes Can Neutralize the Severe Acute Respiratory Syndrome Coronavirus. ACS Infectious Diseases, 2021, 7, 3096-3110.	3.8	16
16	Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 59618-59632.	8.0	10
17	Builtâ€In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Advanced Materials, 2020, 32, e1905740.	21.0	160
18	COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology, 2020, 15, 646-655.	31.5	501

#	Article	IF	Citations
19	A Bottom-Up Approach Grafts Collagen Fibrils Perpendicularly to Titanium Surfaces. ACS Applied Bio Materials, 2020, 3, 6088-6095.	4.6	1
20	Exploring Morphological Effects on the Mechanics of Blended Poly(lactic acid)/Poly(l̂µ-caprolactone) Extruded Fibers Fabricated Using Multilayer Coextrusion. Macromolecules, 2020, 53, 5047-5055.	4.8	19
21	Optimization of ring-opening metathesis polymerization (ROMP) under physiologically relevant conditions. Polymer Chemistry, 2020, 11, 4492-4499.	3.9	21
22	Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers. Angewandte Chemie - International Edition, 2020, 59, 11379-11383.	13.8	21
23	Highly Expandable Foam for Lithographic 3D Printing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19033-19043.	8.0	23
24	Cell Engineering with Functional Poly(oxanorbornene) Block Copolymers. Angewandte Chemie, 2020, 132, 11475-11479.	2.0	4
25	Design and fabrication of a low-cost pilot-scale melt-processing system. Polymer, 2019, 181, 121802.	3.8	12
26	Structural characterization of protein–polymer conjugates for biomedical applications with small-angle scattering. Current Opinion in Colloid and Interface Science, 2019, 42, 157-168.	7.4	13
27	Freeze-Drying To Produce Efficacious CPMV Virus-like Particles. Nano Letters, 2019, 19, 2099-2105.	9.1	14
28	Slowâ∈Release Formulation of Cowpea Mosaic Virus for In Situ Vaccine Delivery to Treat Ovarian Cancer. Advanced Science, 2018, 5, 1700991.	11,2	54
29	pH Responsive Doxorubicin Delivery by Fluorous Polymers for Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 2954-2962.	4.6	23
30	Poly(lacticâ€coâ€glycolic acid) devices: Production and applications for sustained protein delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1516.	6.1	45
31	Green nanofillers: Plant virus reinforcement in hydrophilic polymer nanocomposites. Polymer, 2018, 142, 72-79.	3.8	2
32	Design, display and immunogenicity of HIV1 gp120 fragment immunogens on virus-like particles. Vaccine, 2018, 36, 6345-6353.	3.8	6
33	Polymeric Interventions for Microbial Infections: A Review. Molecular Pharmaceutics, 2018, 15, 2910-2921.	4.6	21
34	"Click―Chemistry for Medicine and Biology. Molecular Pharmaceutics, 2018, 15, 2891-2891.	4.6	5
35	PEGylated Dendrimers as Drug Delivery Vehicles for the Photosensitizer Silicon Phthalocyanine Pc 4 for Candidal Infections. Biomacromolecules, 2017, 18, 379-385.	5.4	41
36	Polymer Structure and Conformation Alter the Antigenicity of Virus-like Particle–Polymer Conjugates. Journal of the American Chemical Society, 2017, 139, 3312-3315.	13.7	70

#	Article	IF	CITATIONS
37	Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo. Analytical Chemistry, 2017, 89, 5932-5939.	6.5	13
38	Drawing in poly($\hat{l}\mu$ -caprolactone) fibers: tuning mechanics, fiber dimensions and surface-modification density. Journal of Materials Chemistry B, 2017, 5, 4499-4506.	5.8	13
39	Fluorinated polymer–photosensitizer conjugates enable improved generation of ROS for anticancer photodynamic therapy. Polymer Chemistry, 2017, 8, 3195-3202.	3.9	27
40	Biologically Triggered Delivery of EGF from Polymer Fiber Patches. ACS Macro Letters, 2017, 6, 593-597.	4.8	12
41	In Situ Fabrication of Fiber Reinforced Three-Dimensional Hydrogel Tissue Engineering Scaffolds. ACS Biomaterials Science and Engineering, 2017, 3, 1869-1879.	5.2	32
42	Electrostatic layer-by-layer construction of fibrous TMV biofilms. Nanoscale, 2017, 9, 1580-1590.	5.6	27
43	3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Applied Materials & Interfaces, 2017, 9, 4015-4023.	8.0	314
44	Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules, 2017, 18, 103-112.	5.4	29
45	Milling solid proteins to enhance activity after melt-encapsulation. International Journal of Pharmaceutics, 2017, 533, 254-265.	5.2	11
46	Biodegradable Viral Nanoparticle/Polymer Implants Prepared <i>via</i> Melt-Processing. ACS Nano, 2017, 11, 8777-8789.	14.6	47
47	Polyolefin Microfiber Based Antibacterial Fibrous Membrane by Forced Assembly Coextrusion. Macromolecular Materials and Engineering, 2017, 302, 1600304.	3.6	8
48	Analysis of Polymer-Biomacromolecule Composites in the Solid-State via Energy Dispersive Spectroscopy-Scanning Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1386-1387.	0.4	0
49	Erythromycin Modification That Improves Its Acidic Stability while Optimizing It for Local Drug Delivery. Antibiotics, 2017, 6, 11.	3.7	40
50	Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 8928-8938.	8.0	30
51	Diffusion and Uptake of Tobacco Mosaic Virus as Therapeutic Carrier in Tumor Tissue: Effect of Nanoparticle Aspect Ratio. Journal of Physical Chemistry B, 2016, 120, 6120-6129.	2.6	31
52	Processing and surface modification of polymer nanofibers for biological scaffolds: a review. Journal of Materials Chemistry B, 2016, 4, 5958-5974.	5.8	61
53	DNA as a flame retardant additive for low-density polyethylene. Polymer, 2016, 97, 504-514.	3.8	46
54	"Graft-to―Protein/Polymer Conjugates Using Polynorbornene Block Copolymers. Biomacromolecules, 2016, 17, 641-648.	5.4	39

#	Article	IF	Citations
55	PEGylation to Improve Protein Stability During Melt Processing. Macromolecular Bioscience, 2015, 15, 1332-1337.	4.1	25
56	Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging. Diagnostics, 2015, 5, 318-332.	2.6	15
57	Coextruded, Aligned, and Gradient-Modified Poly(Îμ-caprolactone) Fibers as Platforms for Neural Growth. Biomacromolecules, 2015, 16, 860-867.	5.4	45
58	Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomaterialia, 2015, 19, 166-179.	8.3	79
59	Protein ROMP: Aqueous Graft-from Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2015, 4, 969-973.	4.8	60
60	Multifunctional and spatially controlled bioconjugation to melt coextruded nanofibers. Polymer Chemistry, 2015, 6, 5683-5692.	3.9	25
61	Proteins as substrates for controlled radical polymerization. Polymer Chemistry, 2014, 5, 1545-1558.	3.9	53
62	Surface Modification of Melt Extruded Poly ($\hat{l}\mu$ -caprolactone) Nanofibers: Toward a New Scalable Biomaterial Scaffold. ACS Macro Letters, 2014, 3, 585-589.	4.8	61
63	Peptide and protein-based inhibitors of HIV-1 co-receptors. Experimental Biology and Medicine, 2013, 238, 442-449.	2.4	12
64	Photodynamic activity of viral nanoparticles conjugated with C60. Chemical Communications, 2012, 48, 9044.	4.1	34
65	Combinatorial Synthesis, Screening, and Binding Studies of Highly Functionalized Polyamino-amido Oligomers for Binding to Folded RNA. Journal of Nucleic Acids, 2012, 2012, 1-7.	1.2	1
66	Bio-inspired synthesis and biological evaluation of a colchicine-related compound library. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3776-3780.	2.2	35
67	The Art of Engineering Viral Nanoparticles. Molecular Pharmaceutics, 2011, 8, 29-43.	4.6	233
68	Functional Virus-Based Polymer–Protein Nanoparticles by Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2011, 133, 9242-9245.	13.7	173
69	Cell Targeting with Hybrid Qβ Virusâ€Like Particles Displaying Epidermal Growth Factor. ChemBioChem, 2011, 12, 2441-2447.	2.6	89
70	Introduction of a Triazole Amino Acid into a Peptoid Oligomer Induces Turn Formation in Aqueous Solution. Organic Letters, 2007, 9, 2381-2383.	4.6	93
71	[9] Peptide Nucleic Acid Microarrays Made with (S,S)â€transâ€Cyclopentaneâ€Constrained Peptide Nucleic Acids. Methods in Enzymology, 2006, 410, 189-200.	1.0	3
72	Cyclopropane PNA: observable triplex melting in a PNA constrained with a 3-membered ring. Tetrahedron Letters, 2005, 46, 915-917.	1.4	27

#	Article	IF	CITATIONS
73	Enhanced Oligonucleotide Binding to Self-Assembled Nanofibers. Bioconjugate Chemistry, 2005, 16, 501-503.	3.6	51
74	Cyclopentane-modified PNA improves the sensitivity of nanoparticle-based scanometric DNA detection. Chemical Communications, 2005, , 2101.	4.1	23
75	(S,S)-trans-Cyclopentane-Constrained Peptide Nucleic Acids. A General Backbone Modification that Improves Binding Affinity and Sequence Specificity. Journal of the American Chemical Society, 2004, 126, 15067-15073.	13.7	75
76	Peptide Nucleic Acids with a Flexible Secondary Amine in the Backbone Maintain Oligonucleotide Binding Affinity. Organic Letters, 2004, 6, 4699-4702.	4.6	22
77	Recent advancements in single dose slowâ€release devices for prophylactic vaccines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	6.1	0
78	A Singleâ€Dose Qβ VLP Vaccine Against S100A9 Protein Reduces Atherosclerosis in a Preclinical Model. Advanced Therapeutics, 0, , 2200092.	3.2	5