Craig R Primmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4161500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficiency of modelâ€based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molecular Ecology, 2006, 15, 63-72.	3.9	720
2	Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature, 2015, 528, 405-408.	27.8	527
3	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
4	Microsatellite â€~evolution': directionality or bias?. Nature Genetics, 1995, 11, 360-362.	21.4	342
5	A wide-range survey of cross-species microsatellite amplification in birds. Molecular Ecology, 1996, 5, 365-378.	3.9	304
6	Singleâ€nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Molecular Ecology, 2002, 11, 603-612.	3.9	299
7	Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Molecular Ecology, 2007, 16, 2638-2654.	3.9	278
8	Contemporary fisherian life-history evolution in small salmonid populations. Nature, 2002, 419, 826-830.	27.8	263
9	Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Molecular Ecology, 2005, 14, 3623-3642.	3.9	263
10	Expressed Sequence Tag-Linked Microsatellites as a Source of Gene-Associated Polymorphisms for Detecting Signatures of Divergent Selection in Atlantic Salmon (Salmo salar L.). Molecular Biology and Evolution, 2005, 22, 1067-1076.	8.9	252
11	Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature, 1997, 389, 593-596.	27.8	239
12	Low Frequency of Microsatellites in the Avian Genome. Genome Research, 1997, 7, 471-482.	5.5	238
13	Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow <i>Hirundo rustica</i> . Molecular Ecology, 1995, 4, 493-498.	3.9	237
14	SNPâ€array reveals genomeâ€wide patterns of geographical and potential adaptive divergence across the natural range of <scp>A</scp> tlantic salmon (<i><scp>S</scp>almo salar</i>). Molecular Ecology, 2013, 22, 532-551.	3.9	212
15	Harnessing the Power of Genomics to Secure the Future of Seafood. Trends in Ecology and Evolution, 2017, 32, 665-680.	8.7	202
16	Sex chromosome evolution and speciation in <i>Ficedula</i> flycatchers. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 53-59.	2.6	196
17	Directional evolution in germline microsatellite mutations. Nature Genetics, 1996, 13, 391-393.	21.4	190
18	Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Molecular Ecology, 2003, 12, 1963-1978.	3.9	177

#	Article	IF	CITATIONS
19	Matrilinear phylogeography of Atlantic salmon (Salmo salar L.) in Europe and postglacial colonization of the Baltic Sea area. Molecular Ecology, 2001, 10, 89-102.	3.9	145
20	Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources, 2013, 5, 593-598.	0.8	145
21	The evolutionary legacy of sizeâ€selective harvesting extends from genes to populations. Evolutionary Applications, 2015, 8, 597-620.	3.1	142
22	Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana) Tj ETQqO O	0,ggBT /O	verlock 10 Tf 132
23	Molecular Evolution of the Metazoan PHD–HIF Oxygen-Sensing System. Molecular Biology and Evolution, 2011, 28, 1913-1926.	8.9	132
24	Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Molecular Ecology, 2006, 15, 653-666.	3.9	117
25	AN EXPERIMENTAL STUDY OF PATERNITY AND TAIL ORNAMENTATION IN THE BARN SWALLOW (<i>HIRUNDO) Ţ</i>	i ETQq1 1 2.3	0.784314 rg 108
26	High degree of population subdivision in a widespread amphibian. Molecular Ecology, 2004, 13, 2631-2644.	3.9	104
27	Factors affecting avian cross-species microsatellite amplification. Journal of Avian Biology, 2005, 36, 348-360.	1.2	104
28	From Conservation Genetics to Conservation Genomics. Annals of the New York Academy of Sciences, 2009, 1162, 357-368.	3.8	102
29	Speciation, introgressive hybridization and nonlinear rate of molecular evolution in flycatchers. Molecular Ecology, 2001, 10, 737-749.	3.9	99
30	Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics, 2017, 18, 484.	2.8	99
31	Patterns of molecular evolution in avian microsatellites. Molecular Biology and Evolution, 1998, 15, 997-1008.	8.9	97
32	Genomeâ€wide <scp>SNP</scp> analysis reveals a genetic basis for seaâ€age variation in a wild population of <scp>A</scp> tlantic salmon (<i><scp>S</scp>almo salar</i>). Molecular Ecology, 2014, 23, 3452-3468.	3.9	96
33	The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Global Change Biology, 2005, 11, 1664-1679.	9.5	92
34	Genetic lineages and postglacial colonization of grayling (Thymallus thymallus, Salmonidae) in Europe, as revealed by mitochondrial DNA analyses. Molecular Ecology, 2000, 9, 1609-1624.	3.9	91
35	Geographic patterns of genetic differentiation and plumage colour variation are different in the pied flycatcher (<i>Ficedula hypoleuca</i>). Molecular Ecology, 2009, 18, 4463-4476.	3.9	90
36	A Gene-Based Genetic Linkage Map of the Collared Flycatcher (<i>Ficedula albicollis</i>) Reveals Extensive Synteny and Gene-Order Conservation During 100 Million Years of Avian Evolution. Genetics, 2008, 179, 1479-1495.	2.9	88

#	Article	IF	CITATIONS
37	Female-Biased Expression on the X Chromosome as a Key Step in Sex Chromosome Evolution in Threespine Sticklebacks. Molecular Biology and Evolution, 2010, 27, 1495-1503.	8.9	86
38	Molecular evolutionary and population genomic analysis of the nineâ€spined stickleback using a modified restrictionâ€siteâ€associated <scp>DNA</scp> tag approach. Molecular Ecology, 2013, 22, 565-582.	3.9	85
39	Microsatellite data resolve phylogeographic patterns in European grayling, Thymallus thymallus, Salmonidae. Heredity, 2002, 88, 391-401.	2.6	84
40	The benefits of increasing the number of microsatellites utilized in genetic population studies: an empirical perspective. Hereditas, 2004, 141, 61-67.	1.4	80
41	Annotated genes and nonannotated genomes: crossâ€species use of Gene Ontology in ecology and evolution research. Molecular Ecology, 2013, 22, 3216-3241.	3.9	77
42	Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Research, 2002, 30, 1997-2003.	14.5	76
43	Extrapair paternity in relation to sexual ornamentation, arrival date, and condition in a migratory bird. Behavioral Ecology, 2003, 14, 707-712.	2.2	76
44	The Evolution and Adaptive Potential of Transcriptional Variation in Sticklebacks—Signatures of Selection and Widespread Heritability. Molecular Biology and Evolution, 2015, 32, 674-689.	8.9	75
45	Mitochondrial and nuclear DNA phylogeography of Thymallus spp. (grayling) provides evidence of ice-age mediated environmental perturbations in the world's oldest body of fresh water, Lake Baikal. Molecular Ecology, 2002, 11, 2599-2611.	3.9	74
46	Ural owl sex allocation and parental investment under poor food conditions. Oecologia, 2003, 137, 140-147.	2.0	71
47	Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Molecular Ecology, 2004, 14, 311-323.	3.9	71
48	Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nature Communications, 2014, 5, 4071.	12.8	71
49	History vs. current demography: explaining the genetic population structure of the common frog (<i>Rana temporaria</i>). Molecular Ecology, 2006, 15, 975-983.	3.9	70
50	New Microsatellites from the Pied Flycatcher Ficedula Hypoleuca and the Swallow Hirundo Rustica Genomes. Hereditas, 2004, 124, 281-284.	1.4	69
51	Rapid sex-specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nature Ecology and Evolution, 2018, 2, 1800-1807.	7.8	69
52	Genetic assessment of spatiotemporal evolutionary relationships and stocking effects in grayling (Thymallus thymallus, Salmonidae). Ecology Letters, 2002, 5, 193-205.	6.4	68
53	Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica, 2011, 139, 353-367.	1.1	68
54	Temporally stable genetic structure and low migration in an Atlantic salmon population complex: implications for conservation and management. Evolutionary Applications, 2008, 1, 137-154.	3.1	66

#	Article	IF	CITATIONS
55	Sample Planning Optimization Tool for conservation and population Genetics (<scp>SPOTG</scp>): a software for choosing the appropriate number of markers and samples. Methods in Ecology and Evolution, 2013, 4, 299-303.	5.2	66
56	Diversity and linkage disequilibrium in farmed Tasmanian Atlantic salmon. Animal Genetics, 2017, 48, 237-241.	1.7	66
57	Sexual conflict over fertilizations: female bluethroats escape male paternity guards. Behavioral Ecology and Sociobiology, 1998, 43, 401-408.	1.4	64
58	The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Ecoscience, 2006, 13, 531-538.	1.4	64
59	Microsatellite marker data suggest sex-biased dispersal in the common frog Rana temporaria. Molecular Ecology, 2004, 13, 2865-2869.	3.9	63
60	An Experimental Study of Paternity and Tail Ornamentation in the Barn Swallow (Hirundo rustica). Evolution; International Journal of Organic Evolution, 1997, 51, 562.	2.3	62
61	Beyond large-effect loci: large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon. Genetics Selection Evolution, 2020, 52, 9.	3.0	62
62	A Comparison of Biallelic Markers and Microsatellites for the Estimation of Population and Conservation Genetic Parameters in Atlantic Salmon (Salmo salar). Journal of Heredity, 2007, 98, 692-704.	2.4	61
63	The structural variation landscape in 492 Atlantic salmon genomes. Nature Communications, 2020, 11, 5176.	12.8	60
64	Population genomic analyses of earlyâ€phase <scp>A</scp> tlantic <scp>S</scp> almon (<i><scp>S</scp>almo salar</i>) domestication/captive breeding. Evolutionary Applications, 2015, 8, 93-107.	3.1	59
65	Life history variation across four decades in a diverse population complex of Atlantic salmon in a large subarctic river. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 42-55.	1.4	59
66	From population genomics to conservation and management: a workflow for targeted analysis of markers identified using genomeâ€wide approaches in Atlantic salmon <i>Salmo salar</i> . Journal of Fish Biology, 2016, 89, 2658-2679.	1.6	58
67	Different traits affect gain of extrapair paternity and loss of paternity in the pied flycatcher, Ficedula hypoleuca. Animal Behaviour, 2009, 77, 1103-1110.	1.9	57
68	Rapid, broadâ€scale gene expression evolution in experimentally harvested fish populations. Molecular Ecology, 2017, 26, 3954-3967.	3.9	56
69	Comparison of hypoxia-inducible factor-1 alpha in hypoxia-sensitive and hypoxia-tolerant fish species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2007, 2, 177-186.	1.0	54
70	A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (<i>Coregonus lavaretus</i>). Molecular Ecology, 2012, 21, 3516-3530.	3.9	54
71	Aggressiveness is associated with genetic diversity in landlocked salmon (Salmo salar). Molecular Ecology, 2003, 12, 2399-2407.	3.9	51
72	Handicapped males and extrapair paternity in pied flycatchers: a study using microsatellite markers. Molecular Ecology, 1995, 4, 739-744.	3.9	50

#	Article	IF	CITATIONS
73	Screen for Footprints of Selection during Domestication/Captive Breeding of Atlantic Salmon. Comparative and Functional Genomics, 2012, 2012, 1-14.	2.0	50
74	Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity and Conservation, 2013, 22, 3045-3065.	2.6	50
75	Genomic signatures of fineâ€scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defenceâ€related genes. Molecular Ecology, 2018, 27, 2560-2575.	3.9	50
76	A low rate of cross-species microsatellite amplification success in Ranid frogs. Conservation Genetics, 2002, 3, 445-449.	1.5	49
77	Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta. Behavioral Ecology and Sociobiology, 2006, 59, 657-665.	1.4	48
78	Breeding synchrony and paternity in the barn swallow (Hirundo rustica). Behavioral Ecology and Sociobiology, 1999, 45, 211-218.	1.4	46
79	Beyond MHC: signals of elevated selection pressure on Atlantic salmon (<i>Salmo salar</i>) immuneâ€relevant loci. Molecular Ecology, 2010, 19, 1273-1282.	3.9	46
80	Temporally stable population-specific differences in run timing of one-sea-winter Atlantic salmon returning to a large river system. Evolutionary Applications, 2011, 4, 39-53.	3.1	45
81	Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population. Molecular Ecology, 2015, 24, 5158-5174.	3.9	45
82	Maturation in Atlantic salmon (Salmo salar, Salmonidae): a synthesis of ecological, genetic, and molecular processes. Reviews in Fish Biology and Fisheries, 2021, 31, 523-571.	4.9	45
83	Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics, 2010, 11, 156.	2.8	44
84	Polygenic and majorâ€locus contributions to sexual maturation timing in Atlantic salmon. Molecular Ecology, 2021, 30, 4505-4519.	3.9	43
85	Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes. BMC Genomics, 2006, 7, 192.	2.8	42
86	Plastic and Evolutionary Gene Expression Responses Are Correlated in European Grayling (Thymallus) Tj ETQq0 0 0 82-89.	0 rgBT /O∖ 2.4	verlock 10 Tf 42
87	Importance of Genetics in the Interpretation of Favourable Conservation Status. Conservation Biology, 2009, 23, 1378-1381.	4.7	40
88	Identification of reproductively isolated lineages of Amur grayling (Thymallus grubii Dybowski 1869): concordance between phenotypic and genetic variation. Molecular Ecology, 2003, 12, 2345-2355.	3.9	39
89	Signals of major histocompatibility complex overdominance in a wild salmonid population. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3133-3140.	2.6	39
90	Historical and recent genetic bottlenecks in European grayling, Thymallus thymallus. Conservation Genetics, 2010, 11, 279-292.	1.5	39

#	Article	IF	CITATIONS
91	"Riverscape―genetics: river characteristics influence the genetic structure and diversity of anadromous and freshwater Atlantic salmon (<i>Salmo salar</i>) populations in northwest Russia. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1947-1958.	1.4	39
92	Microsatellites reveal clear genetic boundaries among Atlantic salmon (<i>Salmo salar</i>) populations from the Barents and White seas, northwest Russia. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 717-735.	1.4	38
93	Seventy new microsatellites for the pied flycatcher, <i>Ficedula hypoleuca</i> and amplification in other passerine birds. Molecular Ecology Resources, 2008, 8, 874-880.	4.8	37
94	Footprints of Directional Selection in Wild Atlantic Salmon Populations: Evidence for Parasite-Driven Evolution?. PLoS ONE, 2014, 9, e91672.	2.5	37
95	Home ground advantage: Local Atlantic salmon have higher reproductive fitness than dispersers in the wild. Science Advances, 2019, 5, eaav1112.	10.3	37
96	The effect of migratory behaviour on genetic diversity and population divergence: a comparison of anadromous and freshwater Atlantic salmon Salmo salar. Journal of Fish Biology, 2007, 70, 381-398.	1.6	36
97	Title is missing!. Conservation Genetics, 2001, 2, 133-143.	1.5	35
98	Seventy-five EST-linked Atlantic salmon (Salmo salar L.) microsatellite markers and their cross-amplification in five salmonid species. Molecular Ecology Notes, 2005, 5, 282-288.	1.7	34
99	Conservation and Management of Salmon in the Age of Genomics. Annual Review of Animal Biosciences, 2020, 8, 117-143.	7.4	34
100	Strong gene flow and lack of stable population structure in the face of rapid adaptation to local temperature in a spring-spawning salmonid, the European grayling (Thymallus thymallus). Heredity, 2011, 106, 460-471.	2.6	33
101	Candidate genes for colour and vision exhibit signals of selection across the pied flycatcher (Ficedula hypoleuca) breeding range. Heredity, 2012, 108, 431-440.	2.6	33
102	Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics, 2013, 14, 439.	2.8	32
103	Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice. Journal for Nature Conservation, 2013, 21, 433-437.	1.8	32
104	Transcription Profiles of Age-at-Maturity-Associated Genes Suggest Cell Fate Commitment Regulation as a Key Factor in the Atlantic Salmon Maturation Process. G3: Genes, Genomes, Genetics, 2020, 10, 235-246.	1.8	31
105	Rapid evolution in salmon life history induced by direct and indirect effects of fishing. Science, 2022, 376, 420-423.	12.6	31
106	Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201671.	2.6	30
107	Deriving Evolutionary Relationships Among Populations Using Microsatellites and (Îμ)2: All Loci Are Equal, but Some Are More Equal Than Others …. Genetics, 2002, 161, 1339-1347.	2.9	30
108	High Gyrodactylus salaris infection rate in triploid Atlantic salmon Salmo salar. Diseases of Aquatic Organisms, 2010, 91, 129-136.	1.0	30

#	Article	IF	CITATIONS
109	Genetic growth potential, rather than phenotypic size, predicts migration phenotype in Atlantic salmon. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200867.	2.6	29
110	Heterogeneous genetic basis of age at maturity in salmonid fishes. Molecular Ecology, 2021, 30, 1435-1456.	3.9	29
111	Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. PLoS Genetics, 2020, 16, e1009055.	3.5	29
112	Lifeâ€history genomic regions explain differences in Atlantic salmon marine diet specialization. Journal of Animal Ecology, 2020, 89, 2677-2691.	2.8	28
113	Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees. Evolutionary Applications, 2016, 9, 1017-1031.	3.1	27
114	The early marine distribution of Atlantic salmon in the Northâ€east Atlantic: A genetically informed stockâ€specific synthesis. Fish and Fisheries, 2021, 22, 1274-1306.	5.3	26
115	A flexible whole-genome microarray for transcriptomics in three-spine stickleback (Gasterosteus) Tj ETQq1 I	0.784314 rgBT	/Overlock
116	Distribution and biological characteristics of escaped farmed salmon in a major subarctic wild salmon river: implications for monitoring. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 130-142.	1.4	25
117	Reply to Garner et al Trends in Ecology and Evolution, 2016, 31, 83-84.	8.7	24
118	Non-invasive genetic monitoring involving citizen science enables reconstruction of current pack dynamics in a re-establishing wolf population. BMC Ecology, 2017, 17, 44.	3.0	24
119	Genetic variability predicts common frog (Rana temporaria) size at metamorphosis in the wild. Heredity, 2007, 99, 41-46.	2.6	23
120	Variable patterns in the molecular evolution of the hypoxia-inducible factor-1 alpha (HIF-1α) gene in teleost fishes and mammals. Gene, 2008, 420, 1-10.	2.2	23
121	Spatio-temporal genetic structuring of brown trout (Salmo trutta L.) populations within the River Luga, northwest Russia. Conservation Genetics, 2009, 10, 281-289.	1.5	23
122	Sympatric divergence and clinal variation in multiple coloration traits of <i><scp>F</scp>icedula</i> flycatchers. Journal of Evolutionary Biology, 2015, 28, 779-790.	1.7	23
123	High Degree of Transferability of 86 Newly Developed Zebra Finch EST-Linked Microsatellite Markers in 8 Bird Species. Journal of Heredity, 2008, 99, 688-693.	2.4	22
124	Genetic structure of freshwater Atlantic salmon (Salmo salar L.) populations from the lakes Onega and Ladoga of northwest Russia and implications for conservation. Conservation Genetics, 2010, 11, 1711-1724.	1.5	22
125	High level of population genetic structuring in lakeâ€run brown trout, <i>Salmo trutta</i> , of the Inari Basin, northern Finland. Journal of Fish Biology, 2010, 77, 2048-2071.	1.6	22
126	Phylogenetic status of brown trout <i>Salmo trutta</i> populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach. Journal of Fish Biology, 2012, 81, 1479-1500.	1.6	22

#	Article	IF	CITATIONS
127	Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback <i>Gasterosteus aculeatus</i> . G3: Genes, Genomes, Genetics, 2017, 7, 165-178.	1.8	22
128	The Chromosome-Level Genome Assembly of European Grayling Reveals Aspects of a Unique Genome Evolution Process Within Salmonids. G3: Genes, Genomes, Genetics, 2019, 9, 1283-1294.	1.8	22
129	High throughput analysis of 17 microsatellite loci in grayling (Thymallus spp. Salmonidae). , 2001, 2, 173-177.		21
130	Genetic mixedâ€stock analysis of lakeâ€run brown trout <i>Salmo trutta</i> fishery catches in the Inari Basin, northern Finland: implications for conservation and management. Journal of Fish Biology, 2013, 83, 598-617.	1.6	21
131	Transcription and redox enzyme activities: comparison of equilibrium and disequilibrium levels in the three-spined stickleback. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122974.	2.6	21
132	Evidence for reduced genetic variation in severely deformed juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2700-2707.	1.4	20
133	Clonal Structure of Salmon Parasite <i>Gyrodactylus salaris</i> on a Coevolutionary Gradient on Fennoscandian Salmon (<i>Salmo salar</i>). Annales Zoologici Fennici, 2009, 46, 21-33.	0.6	20
134	Does Breeding Ornamentation Signal Genetic Quality in Arctic charr, Salvelinus alpinus?. Evolutionary Biology, 2011, 38, 68-78.	1.1	20
135	Population Genetics of Daubenton's Bat (<i>Myotis daubentonii</i>) in the Archipelago Sea, SW Finland. Annales Zoologici Fennici, 2013, 50, 303-315.	0.6	20
136	Coâ€inheritance of sea age at maturity and iteroparity in the Atlantic salmon <i>vgll3</i> genomic region. Journal of Evolutionary Biology, 2019, 32, 343-355.	1.7	20
137	Distribution of genetic variation in the growth hormone 1 gene in Atlantic salmon (Salmo salar) populations from Europe and North America. Molecular Ecology, 2004, 13, 3857-3869.	3.9	19
138	Unanticipated population structure of European grayling in its northern distribution: implications for conservation prioritization. Frontiers in Zoology, 2009, 6, 6.	2.0	19
139	Genetics of local adaptation in salmonid fishes. Heredity, 2011, 106, 401-403.	2.6	19
140	Molecular pedigree reconstruction and estimation of evolutionary parameters in a wild Atlantic salmon river system with incomplete sampling: a power analysis. BMC Evolutionary Biology, 2014, 14, 68.	3.2	19
141	Time spent in distinct life history stages has sexâ€specific effects on reproductive fitness in wild Atlantic salmon. Molecular Ecology, 2020, 29, 1173-1184.	3.9	19
142	Prediction of offspring fitness based on parental genetic diversity in endangered salmonid populations. Journal of Fish Biology, 2003, 63, 909-927.	1.6	18
143	Generation of a neutral <scp><i>F</i>_{ST}</scp> baseline for testing local adaptation on gill raker number within and between European whitefish ecotypes in the Baltic Sea basin. Journal of Evolutionary Biology, 2015, 28, 1170-1183.	1.7	18
144	Cross-species amplification of zebrafish and central stoneroller microsatellite loci in six other cyprinids. Journal of Fish Biology, 2005, 66, 851-859.	1.6	17

#	Article	IF	CITATIONS
145	Cross-Species Amplification of Salmonid Microsatellites which Reveal Polymorphism in European and Arctic Grayling, Salmonidae: Thymallus Spp Hereditas, 2004, 131, 171-176.	1.4	16
146	CONTEMPORARY ISOLATION-BY-DISTANCE, BUT NOT ISOLATION-BY-TIME, AMONG DEMES OF EUROPEAN GRAYLING (<i>THYMALLUS THYMALLUS</i> , LINNAEUS) WITH RECENT COMMON ANCESTORS. Evolution; International Journal of Organic Evolution, 2009, 63, 549-556.	2.3	16
147	Temporal variation of genetic composition in Atlantic salmon populations from the Western White Sea Basin: influence of anthropogenic factors?. BMC Genetics, 2013, 14, 88.	2.7	16
148	Heterozygosity–behaviour correlations in nineâ€spined stickleback (<i><scp>P</scp>ungitius) Tj ETQq0 0 0 rg</i>	gBT /Overl 3.9	ock 10 Tf 50 15
149	Differences in the metabolic response to temperature acclimation in nineâ€spined stickleback (<i>Pungitius pungitius</i>) populations from contrasting thermal environments. Journal of Experimental Zoology, 2014, 321, 550-565.	1.2	15
150	Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo) Tj ETQq0 0 0	rgBT/Ove	rlocုန္ 10 Tf 5(
151	Proteome variance differences within populations of European whitefish (Coregonus lavaretus) originating from contrasting salinity environments. Journal of Proteomics, 2014, 105, 144-150.	2.4	14
152	A microsatellite baseline for genetic stock identification of European Atlantic salmon (Salmo salar) Tj ETQq0 0 0	rgBT /Ove 2.5	rlock 10 Tf 50
153	Evolutionary stasis of a heritable morphological trait in a wild fish population despite apparent directional selection. Ecology and Evolution, 2019, 9, 7096-7111.	1.9	14
154	Refining the genomic location of single nucleotide polymorphism variation affecting Atlantic salmon maturation timing at a key largeâ€effect locus. Molecular Ecology, 2022, 31, 562-570.	3.9	14
155	The proteomics of feather development in pied flycatchers (<i><scp>F</scp>icedula hypoleuca</i>) with different plumage coloration. Molecular Ecology, 2012, 21, 5762-5777.	3.9	13
156	Molecular evolution of the avian growth hormone gene and comparison with its mammalian counterpart. Journal of Evolutionary Biology, 2006, 19, 844-854.	1.7	12
157	Genetic differentiation between two sympatric morphs of the blind Iran cave barb <i>Iranocypris typhlops</i> . Journal of Fish Biology, 2012, 81, 1747-1753.	1.6	12
158	Comparison of anadromous and landlocked Atlantic salmon genomes reveals signatures of parallel and relaxed selection across the Northern Hemisphere. Evolutionary Applications, 2021, 14, 446-461.	3.1	11
159	Varying signals of the effects of natural selection during teleost growth hormone gene evolution. Genome, 2006, 49, 42-53.	2.0	10
160	Modularity Facilitates Flexible Tuning of Plastic and Evolutionary Gene Expression Responses during Early Divergence. Genome Biology and Evolution, 2018, 10, 77-93.	2.5	10
161	Heritability estimation via molecular pedigree reconstruction in a wild fish population reveals substantial evolutionary potential for sea age at maturity, but not size within age classes. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 790-805.	1.4	10
162	Developmental expression patterns of six6: A gene linked with spawning ecotypes in Atlantic salmon. Gene Expression Patterns, 2020, 38, 119149.	0.8	10

#	Article	IF	CITATIONS
163	Strong regulatory effects of vgll3 genotype on reproductive axis gene expression in juvenile male Atlantic salmon. General and Comparative Endocrinology, 2022, 325, 114055.	1.8	10
164	Cloning, purification, kinetic and anion inhibition studies of a recombinant β-carbonic anhydrase from the Atlantic salmon parasite platyhelminth <i>Gyrodactylus salaris</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1577-1586.	5.2	10
165	Proteomic Profiling of Early Life Stages of European Grayling (<i>Thymallus thymallus</i>). Journal of Proteome Research, 2010, 9, 4790-4800.	3.7	9
166	Isolation and Characterization of 13 New Nine-Spined Stickleback, <i>Pungitius pungitius</i> , Microsatellites Located Nearby Candidate Genes for Behavioural Variation. Annales Zoologici Fennici, 2012, 49, 123-128.	0.6	9
167	The Atlantic salmon whole blood transcriptome and how it relates to major locus maturation genotypes and other tissues. Marine Genomics, 2021, 56, 100809.	1.1	9
168	Cenetic coupling of life-history and aerobic performance in Atlantic salmon. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212500.	2.6	9
169	A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conservation Genetics, 2021, 22, 35-51.	1.5	8
170	Linking <i>vgll3</i> genotype and aggressive behaviour in juvenile Atlantic salmon (<i>Salmo) Tj ETQq0 0 0 rgBT</i>	/Qverlock	10 Tf 50 462
171	Primers for sequence characterization and polymorphism detection in the Atlantic salmon (Salmo) Tj ETQq1 1 0.	784314 rg 1.7	BT ₇ /Overlock
172	Characterization of the first growth hormone gene sequence for a passerine bird—the pied flycatcher (Ficedula hypoleuca). DNA Sequence, 2006, 17, 401-406.	0.7	6
173	Identification of differentially expressed proteins in <i>Ficedula</i> flycatchers. Proteomics, 2008, 8, 2150-2153.	2.2	6
174	Use of differential expression data for identification of novel immune relevant expressed sequence tagâ€linked microsatellite markers in Atlantic salmon (<i>Salmo salar</i> L.). Molecular Ecology Resources, 2008, 8, 1486-1490.	4.8	6
175	PCR Multiplexing for Maximising Genetic Analyses with Limited DNA Samples: An Example in the Collared Flycatcher, <i>Ficedula albicollis</i> . Annales Zoologici Fennici, 2008, 45, 478-482.	0.6	6
176	Isolation and characterization of 19 new microsatellites for European grayling, Thymallus thymallus (Linnaeus, 1758), and their cross-amplification in four other salmonid species. Conservation Genetics Resources, 2010, 2, 219-223.	0.8	6
177	Population genomics reveals repeated signals of adaptive divergence in the Atlantic salmon of northâ€eastern Europe. Journal of Evolutionary Biology, 2021, 34, 866-878.	1.7	6
178	Cytosine methylation patterns suggest a role of methylation in plastic and adaptive responses to temperature in European grayling (Thymallus thymallus) populations. Epigenetics, 2021, 16, 271-288.	2.7	6
179	Standard metabolic rate does not associate with ageâ€atâ€maturity genotype in juvenile Atlantic salmon. Ecology and Evolution, 2022, 12, e8408.	1.9	5
180	Life-history genotype explains variation in migration activity in Atlantic salmon (<i>Salmo salar</i>). Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	5

#	Article	IF	CITATIONS
181	Mixed stock assessment of lake-run Caspian Sea trout Salmo caspius in the Lar National Park, Iran. Fisheries Research, 2020, 230, 105644.	1.7	4
182	Sex-specific lipid profiles in the muscle of Atlantic salmon juveniles. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 38, 100810.	1.0	4
183	Genetic diversity and fitness-related traits in endangered salmonids. , 2001, , 241-268.		2
184	Understanding local adaptation in a freshwater salmonid fish: evolution of a research programme. ICES Journal of Marine Science, 2019, 76, 1404-1414.	2.5	1
185	Genetic Drift Dominates Genome-Wide Regulatory Evolution Following an Ancient Whole-Genome Duplication in Atlantic Salmon. Genome Biology and Evolution, 2021, 13, .	2.5	1
186	Major population splits coincide with episodes of rapid climate change in a forest-dependent bird. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211066.	2.6	1
187	26.P1. Molecular evolution of vertebrate hypoxia inducible factor-1 alpha. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2007, 148, S119.	1.8	0
188	Title is missing!. , 2020, 16, e1009055.		0
189	Title is missing!. , 2020, 16, e1009055.		0
190	Title is missing!. , 2020, 16, e1009055.		0
191	Title is missing!. , 2020, 16, e1009055.		0
192	Title is missing!. , 2020, 16, e1009055.		0
193	Title is missing!. , 2020, 16, e1009055.		0